Completeness, closedness and metric reflections of pseudometric spaces

被引:1
作者
Bilet, Viktoriia [1 ]
Dovgoshey, Oleksiy [1 ,2 ]
机构
[1] Inst Appl Math & Mech NASU, Dept Theory Funct, Dobrovolskogo Str 1, UA-84100 Slovyansk, Ukraine
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Completeness; Pseudometric; Metric reflection of pseudometric; space; Equivalence relation; PRETANGENT SPACES; TANGENT SPACES;
D O I
10.1016/j.topol.2023.108440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a metric space (X, d) is complete iff the set X is closed in every metric superspace of (X, d). For a given pseudometric space (Y, p), we describe the maximal class CEC(Y, p) of superspaces of (Y, p) such that (Y, p) is complete if and only if Y is closed in every (Z, Delta) is an element of CEC(Y, p). We also introduce the concept of pseudoisometric spaces and prove that spaces are pseudoisometric iff their metric reflections are isometric. The last result implies that a pseudometric space is complete if and only if this space is pseudoisometric to a complete pseudometric space. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Completeness of the Metric Space Induced by Finite Measur
    禹建丽
    金家琦
    王伟
    数学季刊, 1994, (03)
  • [32] Pseudometric spaces: From minimality to maximality in the groups of combinatorial self-similarities
    Bilet, Viktoriia
    Dovgoshey, Oleksiy
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2023, 11 (01):
  • [33] On Completeness of Feature Spaces in Blind Steganalysis
    Kodovsky, Jan
    Fridrich, Jessica
    MM&SEC'08: PROCEEDINGS OF THE MULTIMEDIA & SECURITY WORKSHOP 2008, 2008, : 123 - 131
  • [34] Neutrosophic metric spaces
    Murat Kirişci
    Necip Şimşek
    Mathematical Sciences, 2020, 14 : 241 - 248
  • [35] Neutrosophic metric spaces
    Kirisci, Murat
    Simsek, Necip
    MATHEMATICAL SCIENCES, 2020, 14 (03) : 241 - 248
  • [36] Global weak sharp minima and completeness of metric space
    Huang, H
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (02) : 359 - 366
  • [38] A completeness theorem for symmetric product phase spaces
    Ehrhard, T
    JOURNAL OF SYMBOLIC LOGIC, 2004, 69 (02) : 340 - 370
  • [39] ON LINEAR FUNCTIONAL EQUATIONS AND COMPLETENESS OF NORMED SPACES
    Fosner, Ajda
    Ger, Roman
    Gilanyi, Attila
    Moslehian, Mohammad Sal
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 196 - 200
  • [40] Completeness in topological vector spaces and filters on N
    Kadets, Vladimir
    Seliutin, Dmytro
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 28 (04) : 531 - 545