Completeness, closedness and metric reflections of pseudometric spaces

被引:1
作者
Bilet, Viktoriia [1 ]
Dovgoshey, Oleksiy [1 ,2 ]
机构
[1] Inst Appl Math & Mech NASU, Dept Theory Funct, Dobrovolskogo Str 1, UA-84100 Slovyansk, Ukraine
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Completeness; Pseudometric; Metric reflection of pseudometric; space; Equivalence relation; PRETANGENT SPACES; TANGENT SPACES;
D O I
10.1016/j.topol.2023.108440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a metric space (X, d) is complete iff the set X is closed in every metric superspace of (X, d). For a given pseudometric space (Y, p), we describe the maximal class CEC(Y, p) of superspaces of (Y, p) such that (Y, p) is complete if and only if Y is closed in every (Z, Delta) is an element of CEC(Y, p). We also introduce the concept of pseudoisometric spaces and prove that spaces are pseudoisometric iff their metric reflections are isometric. The last result implies that a pseudometric space is complete if and only if this space is pseudoisometric to a complete pseudometric space. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条