Completeness, closedness and metric reflections of pseudometric spaces

被引:1
作者
Bilet, Viktoriia [1 ]
Dovgoshey, Oleksiy [1 ,2 ]
机构
[1] Inst Appl Math & Mech NASU, Dept Theory Funct, Dobrovolskogo Str 1, UA-84100 Slovyansk, Ukraine
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Completeness; Pseudometric; Metric reflection of pseudometric; space; Equivalence relation; PRETANGENT SPACES; TANGENT SPACES;
D O I
10.1016/j.topol.2023.108440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that a metric space (X, d) is complete iff the set X is closed in every metric superspace of (X, d). For a given pseudometric space (Y, p), we describe the maximal class CEC(Y, p) of superspaces of (Y, p) such that (Y, p) is complete if and only if Y is closed in every (Z, Delta) is an element of CEC(Y, p). We also introduce the concept of pseudoisometric spaces and prove that spaces are pseudoisometric iff their metric reflections are isometric. The last result implies that a pseudometric space is complete if and only if this space is pseudoisometric to a complete pseudometric space. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Completeness of fuzzy quasi-pseudometric spaces
    Shi, Yi
    Yao, Wei
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 426 - 444
  • [2] Completeness in Quasi-Pseudometric Spaces-A Survey
    Cobzas, Stefan
    MATHEMATICS, 2020, 8 (08)
  • [3] Completeness in metric spaces
    Arenas, FG
    Sánchez-Granero, MA
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (08) : 1197 - 1208
  • [4] On completeness of fuzzy metric spaces
    Li, Changqing
    Zhang, Yanlan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 339 - 345
  • [5] On completeness and compactness in fuzzy metric spaces
    Gurbet Baydar
    Mustafa Telci
    The Journal of Analysis, 2023, 31 : 747 - 758
  • [6] On completeness and compactness in fuzzy metric spaces
    Baydar, Gurbet
    Telci, Mustafa
    JOURNAL OF ANALYSIS, 2023, 31 (01) : 747 - 758
  • [7] Compactness and completeness in partial metric spaces
    Mykhaylyuk, Volodymyr
    Myronyk, Vadym
    TOPOLOGY AND ITS APPLICATIONS, 2020, 270
  • [8] On Completeness in Metric Spaces and Fixed Point Theorems
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [9] A Characterization of Strong Completeness in Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    MATHEMATICS, 2020, 8 (06)
  • [10] On Completeness in Metric Spaces and Fixed Point Theorems
    Valentín Gregori
    Juan-José Miñana
    Bernardino Roig
    Almanzor Sapena
    Results in Mathematics, 2018, 73