A xenogeneic decellularized multiphasic scaffold for the repair of osteochondral defects in a rabbit model

被引:4
作者
Cheng, Jiangqi [1 ]
Shen, Kai [1 ]
Zuo, Qiang [1 ]
Yan, Kai [1 ]
Zhang, Xiao [1 ]
Liang, Wenwei [1 ]
Fan, Weimin [1 ]
机构
[1] Nanjing Med Univ, Dept Orthoped, Affiliated Hosp 1, Nanjing 210029, Peoples R China
关键词
Osteochondral defect; Decellularized Matrix; Bioactive scaffolds; Tissue engineering; Osteochondral regeneration; ARTICULAR-CARTILAGE; SUBCHONDRAL BONE; ORIENTATION; MATRIX;
D O I
10.1016/j.matdes.2022.111450
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Osteochondral defects involving cartilage and subchondral bone are difficult to repair. Recently, scientists have attempted to develop composite scaffolds for repair of osteochondral injuries. However, the avail-able composite scaffolds do not fully recapitulate the functions of the cartilage, subchondral bone, and cancellous bone. In this study, we developed a bioactive multiphase scaffold by decellularizing an intact osteochondral graft for osteochondral repair. The porosity and mechanical properties of the scaffolds were optimized using laser drilling and collagen digestion. The scaffold promoted the recellularization of the cartilage layer. The experimental results showed that the multiphasic scaffolds had excellent mechanical properties and structural stability similar to that of the normal rabbit osteochondral tissue. The in vitro analysis showed that the scaffold promoted zone-specific gene expression. Approximately 12 weeks after in vivo implantation, the multiphasic scaffold significantly facilitated the concurrent regeneration of cartilage and subchondral bone in a rabbit model (detected using gross and micro -computed tomography images, histological staining, immunohistochemistry, and visualization of the col-lagen network). Overall, this study provides ideas for the development of new multiphasic scaffolds for osteochondral defect repair.(c) 2022 The Authors. Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:14
相关论文
共 39 条
[1]   Immune response to biologic scaffold materials [J].
Badylak, Stephen E. ;
Gilbert, Thomas W. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :109-116
[2]   Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging [J].
Bancelin, Stephane ;
Nazac, Andre ;
Ibrahim, Bicher Haj ;
Dokladal, Petr ;
Decenciere, Etienne ;
Teig, Benjamin ;
Haddad, Huda ;
Fernandez, Herve ;
Schanne-Klein, Marie-Claire ;
De Martino, Antonello .
OPTICS EXPRESS, 2014, 22 (19) :22561-22574
[3]   Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel [J].
Beck, Emily C. ;
Barragan, Marilyn ;
Tadros, Madeleine H. ;
Gehrke, Stevin H. ;
Detamore, Michael S. .
ACTA BIOMATERIALIA, 2016, 38 :94-105
[4]   Characterization of Subchondral Bone Repair for Marrow-Stimulated Chondral Defects and Its Relationship to Articular Cartilage Resurfacing [J].
Chen, Hongmei ;
Chevrier, Anik ;
Hoemann, Caroline D. ;
Sun, Jun ;
Ouyang, Wei ;
Buschmann, Michael D. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2011, 39 (08) :1731-1740
[5]   Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells [J].
Ding, Xiaoming ;
Zhu, Meifeng ;
Xu, Baoshan ;
Zhang, Jiamin ;
Zhao, Yanhong ;
Ji, Shenglu ;
Wang, Lina ;
Wang, Lianyong ;
Li, Xiulan ;
Kong, Deling ;
Ma, Xinlong ;
Yang, Qiang .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) :16696-16705
[6]   The Role of Growth Factors in Cartilage Repair [J].
Fortier, Lisa A. ;
Barker, Joseph U. ;
Strauss, Eric J. ;
McCarrel, Taralyn M. ;
Cole, Brian J. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2011, 469 (10) :2706-2715
[7]   Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink [J].
Gao, Jingming ;
Ding, Xiaoquan ;
Yu, Xiaoye ;
Chen, Xiaobin ;
Zhang, Xingyu ;
Cui, Shuquan ;
Shi, Jiayue ;
Chen, Jun ;
Yu, Lin ;
Chen, Shiyi ;
Ding, Jiandong .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (03)
[8]   DiameterJ: A validated open source nanofiber diameter measurement tool [J].
Hotaling, Nathan A. ;
Bharti, Kapil ;
Kriel, Haydn ;
Simon, Carl G., Jr. .
BIOMATERIALS, 2015, 61 :327-338
[9]   Subchondral bone microenvironment in osteoarthritis and pain [J].
Hu, Yan ;
Chen, Xiao ;
Wang, Sicheng ;
Jing, Yingying ;
Su, Jiacan .
BONE RESEARCH, 2021, 9 (01)
[10]   A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) [J].
Jin, Ying-Hui ;
Cai, Lin ;
Cheng, Zhen-Shun ;
Cheng, Hong ;
Deng, Tong ;
Fan, Yi-Pin ;
Fang, Cheng ;
Huang, Di ;
Huang, Lu-Qi ;
Huang, Qiao ;
Han, Yong ;
Hu, Bo ;
Hu, Fen ;
Li, Bing-Hui ;
Li, Yi-Rong ;
Liang, Ke ;
Lin, Li-Kai ;
Luo, Li-Sha ;
Ma, Jing ;
Ma, Lin-Lu ;
Peng, Zhi-Yong ;
Pan, Yun-Bao ;
Pan, Zhen-Yu ;
Ren, Xue-Qun ;
Sun, Hui-Min ;
Wang, Ying ;
Wang, Yun-Yun ;
Weng, Hong ;
Wei, Chao-Jie ;
Wu, Dong-Fang ;
Xia, Jian ;
Xiong, Yong ;
Xu, Hai-Bo ;
Yao, Xiao-Mei ;
Yuan, Yu-Feng ;
Ye, Tai-Sheng ;
Zhang, Xiao-Chun ;
Zhang, Ying-Wen ;
Zhang, Yin-Gao ;
Zhang, Hua-Min ;
Zhao, Yan ;
Zhao, Ming-Juan ;
Zi, Hao ;
Zeng, Xian-Tao ;
Wang, Yong-Yan ;
Wang, Xing-Huan .
MILITARY MEDICAL RESEARCH, 2020, 7 (01)