Bohr and Rogosinski inequalities for operator valued holomorphic functions

被引:1
|
作者
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
Pal, Subhadip [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Orissa, India
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 182卷
关键词
Bohr inequality; Rogosinski inequality; p-Bohr radius; Operator valued analytic function; Geometry of Banach spaces; p-uniformly C-convexity; POWER-SERIES THEOREM; COMPLEX CONVEXITY; RADIUS; SPACE; BASES;
D O I
10.1016/j.bulsci.2022.103214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any complex Banach space Xand each p.[1, 8), we introduce the p-Bohr radius of order N(. N) is Rp, N(X) defined by R p,N (X) = sup r = 0 : N k=0 xkp rpk = f p H 8(D,X) , where f(z) = 8 k=0xkzk. H8( D, X). Here D={z. C: |z| < 1} denotes the unit disk. We also introduce the following geometric notion of p-uniformly C-convexity of order Nfor a complex Banach space Xfor some N. N. For p.[2, 8), a complex Banach space Xis called p-uniformly C-convex of order Nif there exists a constant. > 0such that x0 p +. x1 p +.2 x2 p + center dot center dot center dot +.N xN p 1/ p = max..[0,2p) x0 + N k=1 ei.xk (0.1) for all x0, x1,..., xN. X. We denote Ap,N(X), the supremum of all such constants.satisfying (0.1). We obtain the lower and upper bounds of Rp, N(X) in terms of Ap,N(X). In this paper, for p.[2, 8) and each N. N, we prove that complex Banach space Xis p-uniformly C-convex of order Nif, and only if, the p-Bohr radius of order N Rp, N(X) > 0. We also study the p-Bohr radius of order Nfor the Lebesgue spaces Lq(mu) for 1 = p < q<8 or 1 = q= p < 2. Finally, we prove an operator valued analogue of a refined version of Bohr and Rogosinski inequality for bounded holomorphic functions from the unit disk Dinto B(H), where B(H) denotes the space of all bounded linear operator on a complex Hilbert space H. (C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Bohr inequalities for the class of unimodular bounded functions on shifted disks
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 199
  • [22] Bohr-Rogosinski Phenomenon for S*(ψ) and C(ψ)
    Gangania, Kamaljeet
    Kumar, S. Sivaprasad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [23] Remarks on the Bohr and Rogosinski phenomena for power series
    Aizenberg, Lev
    ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (01) : 69 - 78
  • [24] Bohr Inequalities in Some Classes of Analytic Functions
    Ismagilov A.A.
    Kayumova A.V.
    Kayumov I.R.
    Ponnusamy S.
    Journal of Mathematical Sciences, 2021, 252 (3) : 360 - 373
  • [25] The Bohr-type operator on analytic functions and sections
    Huang, Yong
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 317 - 332
  • [26] Bohr-type inequalities for bounded analytic functions of Schwarz functions
    Hu, Xiaojun
    Wang, Qihan
    Long, Boyong
    AIMS MATHEMATICS, 2021, 6 (12): : 13608 - 13621
  • [27] Bohr's theorem for holomorphic mappings with values in homogeneous balls
    Hamada, Hidetaka
    Honda, Tatsuhiro
    Kohr, Gabriela
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 173 (01) : 177 - 187
  • [28] Refined Bohr-type inequalities with area measure for bounded analytic functions
    Huang, Yong
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [29] The Bohr-Type Inequalities for Holomorphic Mappings with a Lacunary Series in Several Complex Variables
    Lin, Rouyuan
    Liu, Mingsheng
    Ponnusamy, Saminathan
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 63 - 79
  • [30] Bohr-Type Inequalities for Unimodular Bounded Analytic Functions
    Chen, Kaixin
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    RESULTS IN MATHEMATICS, 2023, 78 (05)