Primal-dual splittings as fixed point iterations in the range of linear operators

被引:8
作者
Briceno-Arias, Luis [1 ]
Roldan, Fernando [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Valparaiso, Chile
关键词
Convex optimization; Douglas-Rachford splitting; Krasnosel'skii-Mann iterations; Monotone operator theory; Primal-dual algorithm; Quasinonexpansive operators; COMPOSITE MONOTONE INCLUSIONS; TOTAL VARIATION MINIMIZATION; ALGORITHM; CONVERGENCE; MODEL; SUM;
D O I
10.1007/s10898-022-01237-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we study the convergence of the relaxed primal-dual algorithm with critical preconditioners for solving composite monotone inclusions in real Hilbert spaces. We prove that this algorithm define Krasnosel'skii-Mann (KM) iterations in the range of a particular monotone self-adjoint linear operator with non-trivial kernel. Our convergence result generalizes (Condat in J Optim Theory Appl 158: 460-479, 2013, Theorem 3.3) and follows from that of KM iterations defined in the range of linear operators, which is a real Hilbert subspace under suitable conditions. The Douglas-Rachford splitting (DRS) with a non-standard metric is written as a particular instance of the primal-dual algorithm with critical preconditioners and we recover classical results from this new perspective. We implement the algorithm in total variation reconstruction, verifying the advantages of using critical preconditioners and relaxation steps.
引用
收藏
页码:847 / 866
页数:20
相关论文
共 46 条
[1]  
[Anonymous], 2001, Studies in Computational Mathematics
[2]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70034-1
[3]  
Aubin J.P., 2009, SET VALUED ANAL MODE, DOI DOI 10.1007/978-0-8176-4848-0
[4]   A splitting algorithm for dual monotone inclusions involving cocoercive operators [J].
Bang Cong Vu .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (03) :667-681
[5]   On the Douglas-Rachford algorithm [J].
Bauschke, Heinz H. ;
Moursi, Walaa M. .
MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) :263-284
[6]   New Demiclosedness Principles for (Firmly) Nonexpansive Operators [J].
Bauschke, Heinz H. .
COMPUTATIONAL AND ANALYTICAL MATHEMATICS: IN HONOR OF JONATHAN BORWEIN'S 60TH BIRTHDAY, 2013, 50 :19-28
[7]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[8]   A DOUGLAS-RACHFORD TYPE PRIMAL-DUAL METHOD FOR SOLVING INCLUSIONS WITH MIXTURES OF COMPOSITE AND PARALLEL-SUM TYPE MONOTONE OPERATORS [J].
Bot, Radu Ioan ;
Hendrich, Christopher .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) :2541-2565
[9]   A PRIMAL-DUAL SPLITTING ALGORITHM FOR FINDING ZEROS OF SUMS OF MAXIMAL MONOTONE OPERATORS [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Heinrich, Andre .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) :2011-2036
[10]   An integrated behavioral model of land use and transport system:: A hyper-network equilibrium approach [J].
Briceno, Luis ;
Cominetti, Roberto ;
Cortes, Cristian E. ;
Martinez, Francisco .
NETWORKS & SPATIAL ECONOMICS, 2008, 8 (2-3) :201-224