Decentralized position-force zero-sum approximate optimal control for reconfigurable robots with unmodeled dynamic

被引:1
作者
Zhu, Xinye [1 ,2 ]
An, Tianjiao [2 ]
Wang, Gang [1 ]
机构
[1] Baicheng Normal Univ, Sch Mech & Control Engn, Zhongxing West Rd 57, Baicheng 137000, Peoples R China
[2] Changchun Univ Technol, Dept Control Sci & Engn, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Reconfigurable robots; zero-sum game; adaptive dynamic programming; position-force approximate optimal control; HYBRID FORCE/POSITION CONTROL; NEURO-OPTIMAL CONTROL; MANIPULATORS; OBSERVER;
D O I
10.1177/01423312221109726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the position-force-based approximate optimal control method is developed for reconfigurable robots using zero-sum game strategy. By utilizing the Newton-Euler iteration technique, the robotic system's dynamic model is formulated and the state space equation is derived. According to adaptive dynamic programming (ADP) and neural network algorithm, the trajectory tracking control problem is transformed into a zero-sum game-based optimal control issue. The optimal control policy and worst disturbance policy are obtained by Hamilton-Jacobi-Issacs (HJI) function, respectively. Unlike the conventional learning-based robotic control method, the proposed zero-sum game-based method no need extra sub-controller that can reduce the computational burden. The reconfigurable robot system's tracking error is uniformly ultimately bounded by the Lyapunov theorem. Finally, simulation experiments demonstrate the advantages of the proposed method.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 43 条
  • [1] An TJ, 2020, 2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), P228, DOI [10.1109/icaci49185.2020.9177637, 10.1109/ICACI49185.2020.9177637]
  • [2] An TJ, 2019, 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), P31, DOI 10.1109/SSCI44817.2019.9002953
  • [3] Basar, 1999, DYNAMIC NONCOOPERATI
  • [4] Basar T., 1995, OPTIMAL CONTROL RELA
  • [5] DYNAMIC PROGRAMMING
    BELLMAN, R
    [J]. SCIENCE, 1966, 153 (3731) : 34 - &
  • [6] Parallel Force/Position Control of an Epicardial Parallel Wire Robot
    Costanza, Adam D.
    Breault, Macauley S.
    Wood, Nathan A.
    Passineau, Michael J.
    Moraca, Robert J.
    Riviere, Cameron N.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) : 1186 - 1191
  • [7] Adaptive optimal fault-tolerant control scheme for a class of strict-feedback nonlinear systems
    Dai, Jiao
    Liu, Chunsheng
    Sun, Jingliang
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (04) : 1079 - 1087
  • [8] Task Allocation Without Communication Based on Incomplete Information Game Theory for Multi-robot Systems
    Dai, Wei
    Lu, Huimin
    Xiao, Junhao
    Zheng, Zhiqiang
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 94 (3-4) : 841 - 856
  • [9] Zero-sum game-based neuro-optimal control of modular robot manipulators with uncertain disturbance using critic only policy iteration
    Dong, Bo
    An, Tianjiao
    Zhu, Xinye
    Li, Yuanchun
    Liu, Keping
    [J]. NEUROCOMPUTING, 2021, 450 : 183 - 196
  • [10] Model-free optimal decentralized sliding mode control for modular and reconfigurable robots based on adaptive dynamic programming
    Dong, Bo
    An, Tianjiao
    Zhou, Fan
    Yu, Weibo
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (12)