Lipschitz bounds for integral functionals with (p, q)-growth conditions

被引:16
作者
Bella, Peter [1 ]
Schaeffner, Mathias [1 ]
机构
[1] TU Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词
Non-standard growth conditions; (p; q) growth condition; non-uniform ellipticity; REGULARITY; MINIMIZERS;
D O I
10.1515/acv-2022-0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study local regularity properties of local minimizers of scalar integral functionals of the form F[u] := integral(Omega) F(del u) - fu dx where the convex integrand F satisfies controlled (p, q)-growth conditions. We establish Lipschitz continuity under sharp assumptions on the forcing term f and improved assumptions on the growth conditions on F with respect to the existing literature. Along the way, we establish an L-infinity-L-2-estimate for solutions of linear uniformly elliptic equations in divergence form, which is optimal with respect to the ellipticity ratio of the coefficients.
引用
收藏
页码:373 / 390
页数:18
相关论文
共 42 条
[11]  
Bul?ek M., 2021, PREPRINT
[12]   REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS [J].
Byun, Sun-Sig ;
Oh, Jehan .
ANALYSIS & PDE, 2020, 13 (05) :1269-1300
[13]   Higher differentiability of minimizers of convex variational integrals [J].
Carozza, Menita ;
Kristensen, Jan ;
di Napoli, Antonia Passarelli .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :395-411
[14]   Boundary regularity for manifold constrained p(x)-harmonic maps [J].
Chlebicka, Iwona ;
De Filippis, Cristiana ;
Koch, Lukas .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (05) :2335-2375
[15]  
Cianchi A., 1992, J GEOM ANAL, V2, P499
[16]   Global Lipschitz Regularity for a Class of Quasilinear Elliptic Equations [J].
Cianchi, Andrea ;
Maz'ya, Vladimir G. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (01) :100-133
[17]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[18]  
CUPINI G, 2021, ADV CALC VAR
[19]  
De Filippis C., 2022, PREPRINT
[20]  
De Filippis C., 2021, PREPRINT