A Tutorial on Analyzing Ecological Momentary Assessment Data in Psychological Research With Bayesian (Generalized) Mixed-Effects Models

被引:4
作者
Dora, Jonas [1 ]
Mccabe, Connor J. [1 ]
van Lissa, Caspar J. [2 ]
Witkiewitz, Katie [3 ,4 ]
King, Kevin M. [1 ]
机构
[1] Univ Washington, Dept Psychol, Seattle, WA 98195 USA
[2] Tilburg Univ, Dept Methodol & Stat, Tilberg, Netherlands
[3] Univ New Mexico, Ctr Alcohol Subst Use & Addict, Albuquerque, NM USA
[4] Univ New Mexico, Dept Psychol, Albuquerque, NM USA
关键词
bayesian statistics; mixed-effects modeling; ecological momentary assessment; brms; tutorial; SELF-CONTROL DEMANDS; ASSESSMENT EMA; ALCOHOL-USE; REPLICATION; PERSONALITY; IMPUTATION; HANGOVER; EARTH; LIFE;
D O I
10.1177/25152459241235875
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
In this tutorial, we introduce the reader to analyzing ecological momentary assessment (EMA) data as applied in psychological sciences with the use of Bayesian (generalized) linear mixed-effects models. We discuss practical advantages of the Bayesian approach over frequentist methods and conceptual differences. We demonstrate how Bayesian statistics can help EMA researchers to (a) incorporate prior knowledge and beliefs in analyses, (b) fit models with a large variety of outcome distributions that reflect likely data-generating processes, (c) quantify the uncertainty of effect-size estimates, and (d) quantify the evidence for or against an informative hypothesis. We present a workflow for Bayesian analyses and provide illustrative examples based on EMA data, which we analyze using (generalized) linear mixed-effects models to test whether daily self-control demands predict three different alcohol outcomes. All examples are reproducible, and data and code are available at https://osf.io/rh2sw/. Having worked through this tutorial, readers should be able to adopt a Bayesian workflow to their own analysis of EMA data.
引用
收藏
页数:23
相关论文
共 92 条
[1]   Estimating the reproducibility of psychological science [J].
Aarts, Alexander A. ;
Anderson, Joanna E. ;
Anderson, Christopher J. ;
Attridge, Peter R. ;
Attwood, Angela ;
Axt, Jordan ;
Babel, Molly ;
Bahnik, Stepan ;
Baranski, Erica ;
Barnett-Cowan, Michael ;
Bartmess, Elizabeth ;
Beer, Jennifer ;
Bell, Raoul ;
Bentley, Heather ;
Beyan, Leah ;
Binion, Grace ;
Borsboom, Denny ;
Bosch, Annick ;
Bosco, Frank A. ;
Bowman, Sara D. ;
Brandt, Mark J. ;
Braswell, Erin ;
Brohmer, Hilmar ;
Brown, Benjamin T. ;
Brown, Kristina ;
Bruening, Jovita ;
Calhoun-Sauls, Ann ;
Callahan, Shannon P. ;
Chagnon, Elizabeth ;
Chandler, Jesse ;
Chartier, Christopher R. ;
Cheung, Felix ;
Christopherson, Cody D. ;
Cillessen, Linda ;
Clay, Russ ;
Cleary, Hayley ;
Cloud, Mark D. ;
Cohn, Michael ;
Cohoon, Johanna ;
Columbus, Simon ;
Cordes, Andreas ;
Costantini, Giulio ;
Alvarez, Leslie D. Cramblet ;
Cremata, Ed ;
Crusius, Jan ;
DeCoster, Jamie ;
DeGaetano, Michelle A. ;
Della Penna, Nicolas ;
den Bezemer, Bobby ;
Deserno, Marie K. .
SCIENCE, 2015, 349 (6251)
[2]  
Aguilar JE, 2023, Arxiv, DOI [arXiv:2208.07132, 10.48550/arXiv.2208.07132, DOI 10.48550/ARXIV.2208.07132]
[3]   Using anchor-based methods to determine the smallest effect size of interest [J].
Anvari, Farid ;
Lakens, Daniel .
JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY, 2021, 96
[4]  
Armey MF, 2011, BEHAV THER, V42, P579, DOI 10.1016/j.beth.2011.01.002
[5]   Random effects structure for confirmatory hypothesis testing: Keep it maximal [J].
Barr, Dale J. ;
Levy, Roger ;
Scheepers, Christoph ;
Tily, Harry J. .
JOURNAL OF MEMORY AND LANGUAGE, 2013, 68 (03) :255-278
[6]  
Bates D., 2006, [R] lmer, p-values and all that
[7]  
Bates D, 2018, Arxiv, DOI arXiv:1506.04967
[8]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[9]   Ordinal Regression Models in Psychology: A Tutorial [J].
Buerkner, Paul-Christian ;
Vuorre, Matti .
ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2019, 2 (01) :77-101
[10]   brms: An R Package for Bayesian Multilevel Models Using Stan [J].
Buerkner, Paul-Christian .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01) :1-28