Deep learning-based hybrid feature selection for the semantic segmentation of crops and weeds

被引:5
作者
Janneh, Lamin L. [1 ,2 ]
Youngjun, Zhang [1 ]
Hydara, Mbemba [2 ]
Cui, Zhongwei [3 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Univ Gambia UTG, Sch Informat Commun & Technol, POB 3530, Kanifing, Gambia
[3] Guizhou Educ Univ, Sch Math & Big Data, Guiyang 550018, Peoples R China
关键词
Deep learning; Pixel-wise semantic segmentation; Crops and weeds detection;
D O I
10.1016/j.icte.2023.07.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep convolution neural networks are the recent algorithms used for robotic vision. However, the complex crop-weed vegetation and the background interferences required a robust feature representation. Therefore, we proposed a Dual -branch Deep neural network for the semantic segmentation of crops and weeds. The branches utilized distinct feature extraction algorithms that extract essential semantic cues, and a decoder combined these features to improve the global contextual information. Finally, the hybrid feature selection module(HSFM) utilized the decoder features to complement one another. Experimental results show the proposed method obtained mean intersection of union scores of 0.8613 and 0.9099 on CWFID and BoniRob datasets, respectively. (c) 2023 Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:118 / 124
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2023, Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields, DOI [10.1177/0278364917720510, DOI 10.1177/0278364917720510]
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arXiv.1706.05587]
[4]   Dynamic Convolution: Attention over Convolution Kernels [J].
Chen, Yinpeng ;
Dai, Xiyang ;
Liu, Mengchen ;
Chen, Dongdong ;
Yuan, Lu ;
Liu, Zicheng .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11027-11036
[5]  
fvcore, 2023, Meta research
[6]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[7]  
Haug S, 2015, LECT NOTES COMPUT SC, V8928, P105, DOI [10.1007/978-3-319-16220-1-8, 10.1007/978-3-319-16220-1_8]
[8]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, 10.48550/arXiv.1512.03385]
[9]   A survey of loss functions for semantic segmentation [J].
Jadon, Shruti .
2020 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2020, :115-121
[10]   Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds [J].
Janneh, Lamin L. ;
Zhang, Yongjun ;
Cui, Zhongwei ;
Yang, Yitong .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (06)