Entanglement-enhanced quantum strategies for accurate estimation of multibody-group motion and moving-object characteristics

被引:2
作者
Li, Yongqiang [1 ,2 ]
Ren, Changliang [1 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Matter Microstruct & Funct Hunan Prov, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China
[2] Applicat Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.108.062605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study presents a quantum strategy for simultaneous estimation of two physical quantities using different entanglement resources. We explore the utilization of positively or negatively time-correlated photons. The proposed method enables the detection of the central position and relative velocity of multibody systems, as well as precise measurement of the size and velocity of moving objects. Comparative analysis with other strategies reveals the superior quantum advantage of our approach, particularly when appropriate entanglement sources with a high degree of entanglement are employed. These findings contribute to advancing our understanding of quantum strategies for accurate measurements.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Increasing Sensing Resolution with Error Correction [J].
Arrad, G. ;
Vinkler, Y. ;
Aharonov, D. ;
Retzker, A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)
[3]   Optical Quantum Metrology [J].
Barbieri, Marco .
PRX QUANTUM, 2022, 3 (01)
[4]   Microwave Quantum Illumination [J].
Barzanjeh, Shabir ;
Guha, Saikat ;
Weedbrook, Christian ;
Vitali, David ;
Shapiro, Jeffrey H. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2015, 114 (08)
[5]   Using random coherent states to mimic quantum illumination [J].
Brougham, Thomas ;
Samantaray, Nigam ;
Jeffers, John .
PHYSICAL REVIEW A, 2023, 108 (05)
[6]   Heisenberg's uncertainty principle [J].
Busch, Paul ;
Heinonen, Teiko ;
Lahti, Pekka .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 452 (06) :155-176
[7]  
DAriano G. M, 2005, Electron. Notes Discret. Math., V20, P133
[8]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[9]   Multi-parameter estimation beyond quantum Fisher information [J].
Demkowicz-Dobrzanski, Rafal ;
Gorecki, Wojciech ;
Guta, Madalin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (36)
[10]   Using Entanglement Against Noise in Quantum Metrology [J].
Demkowicz-Dobrzanski, Rafal ;
Maccone, Lorenzo .
PHYSICAL REVIEW LETTERS, 2014, 113 (25)