Asymptotically efficient estimation of Ergodic rough fractional Ornstein-Uhlenbeck process under continuous observations

被引:0
作者
Chiba, Kohei [1 ]
Takabatake, Tetsuya [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 3 Machikaneyama Cho 1 Chome, Toyonaka, Osaka, Japan
[2] Hiroshima Univ, Sch Econ, 2-1 Kagamiyama 1 Chome, Higashihiroshima, Hiroshima, Japan
基金
日本学术振兴会;
关键词
Fractional Ornstein-Uhlenbeck process; Estimation of drift parameters; Continuous observations; Local asymptotic normality property;
D O I
10.1007/s11203-023-09300-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of asymptotically efficient estimation of drift parameters of the ergodic fractional Ornstein-Uhlenbeck process under continuous observations when the Hurst parameter H < 1/2 and the mean of its stationary distribution is not equal to zero. In this paper, we derive asymptotically efficient rates and variances of estimators of drift parameters and prove an asymptotic efficiency of a maximum likelihood estimator of drift parameters.
引用
收藏
页码:103 / 122
页数:20
相关论文
共 39 条
[31]   Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein-Uhlenbeck process [J].
Tanaka K. .
Statistical Inference for Stochastic Processes, 2013, 16 (3) :173-192
[32]   ADMISSION CONTROL FOR MULTIDIMENSIONAL WORKLOAD INPUT WITH HEAVY TAILS AND FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Budhiraja, Amarjit ;
Pipiras, Vladas ;
Song, Xiaoming .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) :476-505
[33]   Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise [J].
El Onsy, Brahim ;
Es-Sebaiy, Khalifa ;
Viens, Frederi G. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2017, 89 (02) :431-468
[34]   JOINT MODELLING OF S&P500 AND VIX INDICES WITH ROUGH FRACTIONAL ORNSTEIN-UHLENBECK VOLATILITY MODEL [J].
Onalan, Omer .
ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2022, 25 (01) :68-84
[35]   Fokker-Planck equation and path integral representation of the fractional Ornstein-Uhlenbeck process with two indices [J].
Eab, Chai Hok ;
Lim, S. C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (49)
[36]   Global attracting set of stochastic differential equations with unbounded delay driven by fractional Ornstein-Uhlenbeck process [J].
Peng, Yarong ;
Xu, Liping ;
Li, Zhi .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2024, 32 (02) :143-158
[37]   Parameter estimation for the complex fractional Ornstein-Uhlenbeck processes with Hurst parameter H ∈ (0,1/2) [J].
Alazemi, Fares ;
Alsenafi, Abdulaziz ;
Chen, Yong ;
Zhou, Hongjuan .
CHAOS SOLITONS & FRACTALS, 2024, 188
[38]   Consistency of the drift parameter estimator for the discretized fractional Ornstein-Uhlenbeck process with Hurst index H ∈ (0,1/2) [J].
Kubilius, Kestutis ;
Mishura, Yuliya ;
Ralchenko, Kostiantyn ;
Seleznjev, Oleg .
ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02) :1799-1825
[39]   Berry-Esseen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with the hurst parameter H ∈ (0,1/2) [J].
Chen, Yong ;
Li, Ying .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (13) :2996-3013