Asymptotically efficient estimation of Ergodic rough fractional Ornstein-Uhlenbeck process under continuous observations

被引:0
作者
Chiba, Kohei [1 ]
Takabatake, Tetsuya [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 3 Machikaneyama Cho 1 Chome, Toyonaka, Osaka, Japan
[2] Hiroshima Univ, Sch Econ, 2-1 Kagamiyama 1 Chome, Higashihiroshima, Hiroshima, Japan
基金
日本学术振兴会;
关键词
Fractional Ornstein-Uhlenbeck process; Estimation of drift parameters; Continuous observations; Local asymptotic normality property;
D O I
10.1007/s11203-023-09300-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of asymptotically efficient estimation of drift parameters of the ergodic fractional Ornstein-Uhlenbeck process under continuous observations when the Hurst parameter H < 1/2 and the mean of its stationary distribution is not equal to zero. In this paper, we derive asymptotically efficient rates and variances of estimators of drift parameters and prove an asymptotic efficiency of a maximum likelihood estimator of drift parameters.
引用
收藏
页码:103 / 122
页数:20
相关论文
共 39 条
[21]   Modelling and parameter estimation for discretely observed fractional iterated Ornstein-Uhlenbeck processes [J].
Kalemkerian, Juan .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 :29-51
[22]   Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean [J].
Jiang, Hui ;
Li, Shi Min ;
Wang, Wei Gang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) :1308-1324
[23]   Berry-Esseen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes [J].
Chen, Yong ;
Kuang, Nenghui ;
Li, Ying .
STOCHASTICS AND DYNAMICS, 2020, 20 (04)
[24]   Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean [J].
Hui Jiang ;
Shi Min Li ;
Wei Gang Wang .
Acta Mathematica Sinica, English Series, 2024, 40 :1308-1324
[25]   Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process [J].
Maslowski, Bohdan ;
Pospisil, Jan .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (03) :401-429
[26]   An Exponential Nonuniform Berry-Esseen Bound for the Fractional Ornstein-Uhlenbeck Process [J].
Jiang, Hui ;
Zhou, Jingying .
JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) :1037-1058
[27]   On Simulation of a Fractional Ornstein-Uhlenbeck Process of the Second Kind by the Circulant Embedding Method [J].
Morlanes, Jose Igor ;
Andreev, Andriy .
STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 :155-164
[29]   Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process [J].
Bohdan Maslowski ;
Jan Pospíšil .
Applied Mathematics and Optimization, 2008, 57 :401-429
[30]   Variance and volatility swaps and options under the exponential fractional Ornstein-Uhlenbeck model [J].
Kim, Hyun-Gyoon ;
Kim, See -Woo ;
Kim, Jeong-Hoon .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2024, 72