Asymptotically efficient estimation of Ergodic rough fractional Ornstein-Uhlenbeck process under continuous observations

被引:0
作者
Chiba, Kohei [1 ]
Takabatake, Tetsuya [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 3 Machikaneyama Cho 1 Chome, Toyonaka, Osaka, Japan
[2] Hiroshima Univ, Sch Econ, 2-1 Kagamiyama 1 Chome, Higashihiroshima, Hiroshima, Japan
基金
日本学术振兴会;
关键词
Fractional Ornstein-Uhlenbeck process; Estimation of drift parameters; Continuous observations; Local asymptotic normality property;
D O I
10.1007/s11203-023-09300-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of asymptotically efficient estimation of drift parameters of the ergodic fractional Ornstein-Uhlenbeck process under continuous observations when the Hurst parameter H < 1/2 and the mean of its stationary distribution is not equal to zero. In this paper, we derive asymptotically efficient rates and variances of estimators of drift parameters and prove an asymptotic efficiency of a maximum likelihood estimator of drift parameters.
引用
收藏
页码:103 / 122
页数:20
相关论文
共 21 条
[1]  
[Anonymous], 2010, Stat. Inference Stoch. Process., DOI DOI 10.1007/S11203-009-9035-X
[2]  
[Anonymous], 1981, Applications of Mathematics
[3]   Pricing under rough volatility [J].
Bayer, Christian ;
Friz, Peter ;
Gatheral, Jim .
QUANTITATIVE FINANCE, 2016, 16 (06) :887-904
[4]   Efficient estimation of stable Lévy process with symmetric jumps [J].
Brouste A. ;
Masuda H. .
Statistical Inference for Stochastic Processes, 2018, 21 (2) :289-307
[5]   LOCAL ASYMPTOTIC NORMALITY PROPERTY FOR FRACTIONAL GAUSSIAN NOISE UNDER HIGH-FREQUENCY OBSERVATIONS [J].
Brouste, Alexandre ;
Fukasawa, Masaaki .
ANNALS OF STATISTICS, 2018, 46 (05) :2045-2061
[6]  
Cheridito P., 2003, Electronic journal of probability, V8, P1, DOI 10.1214/EJP.v8-125
[7]   An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter [J].
Chiba, Kohei .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) :319-353
[8]   Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics [J].
Fukasawa, Masaaki ;
Takabatake, Tetsuya ;
Westphal, Rebecca .
MATHEMATICAL FINANCE, 2022, 32 (04) :1086-1132
[9]   Asymptotically efficient estimators for self-similar stationary Gaussian noises under high frequency observations [J].
Fukasawa, Masaaki ;
Takabatake, Tetsuya .
BERNOULLI, 2019, 25 (03) :1870-1900
[10]   Volatility is rough [J].
Gatheral, Jim ;
Jaisson, Thibault ;
Rosenbaum, Mathieu .
QUANTITATIVE FINANCE, 2018, 18 (06) :933-949