Moisture-Resilient Perovskite Solar Cells for Enhanced Stability

被引:51
|
作者
Azmi, Randi [1 ]
Zhumagali, Shynggys [1 ]
Bristow, Helen [1 ]
Zhang, Shanshan [1 ]
Yazmaciyan, Aren [1 ]
Pininti, Anil Reddy [1 ]
Utomo, Drajad Satrio [1 ]
Subbiah, Anand S. [1 ]
De Wolf, Stefaan [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr KSC, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
关键词
charge transport layers; damp heat testing; encapsulation; hygroscopic; moisture; perovskites; stability; HOLE TRANSPORT LAYER; HIGH-PERFORMANCE; HIGHLY EFFICIENT; DEFECT PASSIVATION; ROOM-TEMPERATURE; AIR STABILITY; SPIRO-OMETAD; LOW-COST; HUMIDITY; INTERFACES;
D O I
10.1002/adma.202211317
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid rise in device performance of perovskite solar cells (PSCs), overcoming instabilities under outdoor operating conditions has become the most crucial obstacle toward their commercialization. Among stressors such as light, heat, voltage bias, and moisture, the latter is arguably the most critical, as it can decompose metal-halide perovskite (MHP) photoactive absorbers instantly through its hygroscopic components (organic cations and metal halides). In addition, most charge transport layers (CTLs) commonly employed in PSCs also degrade in the presence of water. Furthermore, photovoltaic module fabrication encompasses several steps, such as laser processing, subcell interconnection, and encapsulation, during which the device layers are exposed to the ambient atmosphere. Therefore, as a first step toward long-term stable perovskite photovoltaics, it is vital to engineer device materials toward maximizing moisture resilience, which can be accomplished by passivating the bulk of the MHP film, introducing passivation interlayers at the top contact, exploiting hydrophobic CTLs, and encapsulating finished devices with hydrophobic barrier layers, without jeopardizing device performance. Here, existing strategies for enhancing the performance stability of PSCs are reviewed and pathways toward moisture-resilient commercial perovskite devices are formulated. Perovskite solar cells have attracted significant attention for commercialization. However, their intrinsic instabilities due to their high susceptibility to moisture cause irreversible perovskite degradation and device failures must be addressed. This article discusses extensively all available strategies to make perovskite solar cells, before final encapsulation, as moisture resilient as possible.image
引用
收藏
页数:27
相关论文
共 50 条
  • [31] A critical review on the moisture stability of halide perovskite films and solar cells
    Chen, Bin
    Wang, Shurong
    Song, Yuheng
    Li, Chengbo
    Hao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [32] Moisture Stability of Perovskite Solar Cells Processed in Supercritical Carbon Dioxide
    Annohene, Gilbert
    Tepper, Gary
    MOLECULES, 2021, 26 (24):
  • [33] Progress on the stability and encapsulation techniques of perovskite solar cells
    Xiang, Ling
    Gao, Fangliang
    Cao, Yunxuan
    Li, Dongyang
    Liu, Qing
    Liu, Hongliang
    Li, Shuti
    ORGANIC ELECTRONICS, 2022, 106
  • [34] Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies
    Mazumdar, Sayantan
    Zhao, Ying
    Zhang, Xiaodan
    FRONTIERS IN ELECTRONICS, 2021, 2
  • [35] Stability Issues of Perovskite Solar Cells: A Critical Review
    Dipta, Shahriyar Safat
    Uddin, Ashraf
    ENERGY TECHNOLOGY, 2021, 9 (11)
  • [36] Towards commercialization: the operational stability of perovskite solar cells
    Li, Nengxu
    Niu, Xiuxiu
    Chen, Qi
    Zhou, Huanping
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) : 8235 - 8286
  • [37] Two-Dimensional Materials for Perovskite Solar Cells with Enhanced Efficiency and Stability
    Qin, Zhixiao
    Chen, Yuetian
    Zhu, Kaicheng
    Zhao, Yixin
    ACS MATERIALS LETTERS, 2021, 3 (09): : 1402 - 1416
  • [38] Stability Issues on Perovskite Solar Cells
    Zhao, Xing
    Park, Nam-Gyu
    PHOTONICS, 2015, 2 (04) : 1139 - 1151
  • [39] Advances in stability of perovskite solar cells
    Wali, Qamar
    Iftikhar, Faiza Jan
    Khan, Muhammad Ejaz
    Ullah, Abid
    Iqbal, Yaseen
    Jose, Rajan
    ORGANIC ELECTRONICS, 2020, 78
  • [40] Preparation and Stability Strategies of Inverted Tin-Based Perovskite Solar Cells
    Zhou Yu-Han
    Feng Xiang-Yun
    Zhu Jia
    Xu Li-Gang
    Chen Run-Feng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (10) : 1889 - 1907