Machine Learning Model to Predict Emergency Department Length of Stay

被引:0
|
作者
Hunter, D. [1 ]
Carr, B. [1 ]
Morey, J. [1 ]
Jones, D. [1 ]
机构
[1] Mayo Clin, Rochester, MN USA
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
314
引用
收藏
页码:S137 / S137
页数:1
相关论文
共 50 条
  • [1] Machine Learning Approaches to Predict Patient's Length of Stay in Emergency Department
    Shbool, Mohammad A.
    S. Arabeyyat, Omar
    Al-Bazi, Ammar
    Al-Hyari, Abeer
    Salem, Arwa
    Abu-Hmaid, Thana'
    Ali, Malak
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2023, 2023
  • [2] Novel Machine Learning Approach to Predict and Personalize Length of Stay for Patients Admitted with Syncope from the Emergency Department
    Lee, Sangil
    Reddy Mudireddy, Avinash
    Kumar Pasupula, Deepak
    Adhaduk, Mehul
    Barsotti, E. John
    Sonka, Milan
    Statz, Giselle M.
    Bullis, Tyler
    Johnston, Samuel L.
    Evans, Aron Z.
    Olshansky, Brian
    Gebska, Milena A.
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (01):
  • [3] Forecasting Medical Patient Length of Stay at Presentation in an Emergency Department Using Machine Learning
    Tsai, M.
    Abernethy, N.
    Mitchell, S.
    Sun, J.
    Tsai, K.
    Payne, T.
    ANNALS OF EMERGENCY MEDICINE, 2018, 72 (04) : S8 - S8
  • [4] Emergency Department Length of Stay
    Bennage, Johnette K.
    Ford, Cassandra D.
    Ezemenaka, Christina J.
    Persing, Tamara F.
    ADVANCED EMERGENCY NURSING JOURNAL, 2024, 46 (03) : 263 - 273
  • [5] Machine Learning Models To Predict Length Of Stay In Hospitals
    Jain, Raunak
    Singh, Mrityunjai
    Rao, A. Ravishankar
    Garg, Rahul
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 545 - 546
  • [6] Application of Machine Learning Algorithms for Patient Length of Stay Prediction in Emergency Department During Hajj
    Hijry, Hassan
    Olawoyin, Richard
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [7] Prediction of Length of Stay in the Emergency Department for COVID-19 Patients: A Machine Learning Approach
    ETU, EGBE-ETU
    MONPLAISIR, L. E. S. L. I. E.
    ARSLANTURK, S. U. Z. A. N.
    MASOUD, S. A. R. A.
    AGUWA, C. E. L. E. S. T. I. N. E.
    MARKEVYCH, I. H. O. R.
    MILLER, J. O. S. E. P. H.
    IEEE ACCESS, 2022, 10 : 42229 - 42237
  • [8] Leveraging machine learning and rule extraction for enhanced transparency in emergency department length of stay prediction
    Sulaiman, Waqar A.
    Stylianides, Charithea
    Nikolaou, Andria
    Antoniou, Zinonas
    Constantinou, Ioannis
    Palazis, Lakis
    Vavlitou, Anna
    Kyprianou, Theodoros
    Kyriacou, Efthyvoulos
    Kakas, Antonis
    Pattichis, Marios S.
    Panayides, Andreas S.
    Pattichis, Constantinos S.
    FRONTIERS IN DIGITAL HEALTH, 2025, 6
  • [9] Factors that predict emergency department length of stay in analysis of national data
    Kim, Minha
    Lee, Sujeong
    Choi, Minyoung
    Kim, Doyeop
    Yoo, Junsang
    Shin, Tae Gun
    Lee, Jin-Hee
    Kim, Seongjung
    Chang, Hansol
    Ko, Eunsil
    CLINICAL AND EXPERIMENTAL EMERGENCY MEDICINE, 2025, 12 (01): : 35 - 46
  • [10] Predicting emergency department orders with multilabel machine learning techniques and simulating effects on length of stay
    Hunter-Zinck, Haley S.
    Peck, Jordan S.
    Strout, Tania D.
    Gaehde, Stephan A.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2019, 26 (12) : 1427 - 1436