Multi-Prior Based Multi-Scale Condition Network for Single-Image HDR Reconstruction

被引:2
|
作者
Jiang, Haorong [1 ]
Zhao, Fengshan [1 ]
Liao, Junda [1 ,2 ]
Liu, Qin [2 ]
Ikenaga, Takeshi [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu, Japan
[2] Nanjing Univ, Nanjing, Peoples R China
关键词
D O I
10.23919/MVA57639.2023.10216063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High Dynamic Range (HDR) imaging aims to reconstruct the natural appearance of real-world scenes by expanding the bit depth of captured images. However, due to the imaging pipeline of off-the-shelf cameras, information loss in over-exposed areas and noise in under-exposed areas pose significant challenges for single-image HDR imaging. As a result, the key to success lies in restoring over-exposed regions and denoising under-exposed regions. In this paper, a multiprior based multi-scale condition network is proposed to address this issue. (1) Three types of prior knowledge modulate the intermediate features in the reconstruction network from different perspectives, resulting in improved modulation effects. (2) Multi-scale fusion extracts and integrates deep semantic information from various priors. Experiments on the NTIRE HDR challenge dataset demonstrate that the proposed method achieves state-of-the-art quantitative results.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Multi-scale network for single image deblurring based on ensemble learning module
    Wu W.
    Pan Y.
    Su N.
    Wang J.
    Wu S.
    Xu Z.
    Yu Y.
    Liu Y.
    Multimedia Tools and Applications, 2025, 84 (11) : 9045 - 9064
  • [32] How to cheat with metrics in single-image HDR reconstruction
    Eilertsen, Gabriel
    Hajisharif, Saghi
    Hanji, Param
    Tsirikoglou, Apostolia
    Mantiuk, Rafal K.
    Unger, Jonas
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3981 - 3990
  • [33] Multi-scale Channel Transformer Network for Single Image Deraining
    Namba, Yuto
    Han, Xian-Hua
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA, MMASIA 2022, 2022,
  • [34] Lightweight Multi-scale Attentional Network for Single Image Dehazing
    Zong, Ping
    Li, Jinjiang
    Hua, Zhen
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 401 - 405
  • [35] Multi-Scale Fusion and Decomposition Network for Single Image Deraining
    Wang, Qiong
    Jiang, Kui
    Wang, Zheng
    Ren, Wenqi
    Zhang, Jianhui
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 191 - 204
  • [36] Multi-Scale Hybrid Fusion Network for Single Image Deraining
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Chen, Chen
    Wang, Guangcheng
    Han, Zhen
    Jiang, Junjun
    Xiong, Zixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3594 - 3608
  • [37] Mural Image Super Resolution Reconstruction Based on Multi-Scale Residual Attention Network
    Xu Zhigang
    Yan Juanjuan
    Zhu Honglei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (16)
  • [38] Multi-scale residual attention network for single image dehazing
    Sheng, Jiechao
    Lv, Guoqiang
    Du, Gang
    Wang, Zi
    Feng, Qibin
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [39] Multi-scale Attentive Residual Network for Single Image Deraining
    Tan, Jing
    Zhang, Yu
    Fu, Huiyuan
    Ma, Huadong
    Gao, Ning
    HUMAN CENTERED COMPUTING, 2019, 11956 : 351 - 362
  • [40] Multi-Scale Progressive Fusion Network for Single Image Deraining
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Chen, Chen
    Huang, Baojin
    Luo, Yimin
    Ma, Jiayi
    Jiang, Junjun
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 8343 - 8352