Small Field Plots Can Cause Substantial Uncertainty in Gridded Aboveground Biomass Products from Airborne Lidar Data

被引:5
作者
Cushman, K. C. [1 ]
Saatchi, Sassan [1 ]
McRoberts, Ronald E. [2 ,3 ]
Anderson-Teixeira, Kristina J. [4 ,5 ]
Bourg, Norman A. [4 ]
Chapman, Bruce [1 ]
McMahon, Sean M. [5 ,6 ]
Mulverhill, Christopher [1 ,7 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91011 USA
[2] Raspberry Ridge Analyt, Hugo, MN 55038 USA
[3] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
[4] Smithsonians Natl Zoo & Conservat Biol Inst, Conservat Ecol Ctr, Front Royal, VA 22630 USA
[5] Smithsonian Trop Res Inst, Forest Global Earth Observ, Panama City 084303092, Panama
[6] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA
[7] Univ British Columbia, Dept Forest Resources Management, Vancouver, BC V6T 1Z4, Canada
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
aboveground biomass; forest structure; prediction uncertainty; lidar; NISAR; ASSISTED ESTIMATION; FOREST; BOOTSTRAP; MODELS; CARBON; VOLUME;
D O I
10.3390/rs15143509
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Emerging satellite radar and lidar platforms are being developed to produce gridded aboveground biomass (AGB) predictions that are poised to expand our understanding of global carbon stocks and changes. However, the spatial resolution of AGB map products from these platforms is often larger than the available field plot data underpinning model calibration and validation efforts. Intermediate-resolution/extent remotely sensed data, like airborne lidar, can serve as a bridge between small plots and map resolution, but methods are needed to estimate and propagate uncertainties with multiple layers of data. Here, we introduce a workflow to estimate the pixel-level mean and variance in AGB maps by propagating uncertainty from a lidar-based model using small plots, taking into account prediction uncertainty, residual uncertainty, and residual spatial autocorrelation. We apply this workflow to estimate AGB uncertainty at a 100 m map resolution (1 ha pixels) using 0.04 ha field plots from 11 sites across four ecoregions. We compare uncertainty estimates using site-specific models, ecoregion-specific models, and a general model using all sites. The estimated AGB uncertainty for 1 ha pixels increased with mean AGB, reaching 7.8-33.3 Mg ha(-1) for site-specific models (one standard deviation), 11.1-28.2 Mg ha(-1) for ecoregion-specific models, and 21.1-22.1 Mg ha(-1) for the general model for pixels in the AGB range of 80-100 Mg ha(-1). Only 3 of 11 site-specific models had a total uncertainty of <15 Mg ha(-1) in this biomass range, suitable for the calibration or validation of AGB map products. Using two additional sites with larger field plots, we show that lidar-based models calibrated with larger field plots can substantially reduce 1 ha pixel AGB uncertainty for the same range from 18.2 Mg ha(-1) using 0.04 ha plots to 10.9 Mg ha(-1) using 0.25 ha plots and 10.1 Mg ha(-1) using 1 ha plots. We conclude that the estimated AGB uncertainty from models estimated from small field plots may be unacceptably large, and we recommend coordinated efforts to measure larger field plots as reference data for the calibration or validation of satellite-based map products at landscape scales (& GE;0.25 ha).
引用
收藏
页数:17
相关论文
共 44 条
  • [1] CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
    Anderson-Teixeira, Kristina J.
    Davies, Stuart J.
    Bennett, Amy C.
    Gonzalez-Akre, Erika B.
    Muller-Landau, Helene C.
    Wright, S. Joseph
    Abu Salim, Kamariah
    Almeyda Zambrano, Angelica Maria
    Alonso, Alfonso
    Baltzer, Jennifer L.
    Basset, Yves
    Bourg, Norman A.
    Broadbent, Eben N.
    Brockelman, Warren Y.
    Bunyavejchewin, Sarayudh
    Burslem, David F. R. P.
    Butt, Nathalie
    Cao, Min
    Cardenas, Dairon
    Chuyong, George B.
    Clay, Keith
    Cordell, Susan
    Dattaraja, Handanakere S.
    Deng, Xiaobao
    Detto, Matteo
    Du, Xiaojun
    Duque, Alvaro
    Erikson, David L.
    Ewango, Corneille E. N.
    Fischer, Gunter A.
    Fletcher, Christine
    Foster, Robin B.
    Giardina, Christian P.
    Gilbert, Gregory S.
    Gunatilleke, Nimal
    Gunatilleke, Savitri
    Hao, Zhanqing
    Hargrove, William W.
    Hart, Terese B.
    Hau, Billy C. H.
    He, Fangliang
    Hoffman, Forrest M.
    Howe, Robert W.
    Hubbell, Stephen P.
    Inman-Narahari, Faith M.
    Jansen, Patrick A.
    Jiang, Mingxi
    Johnson, Daniel J.
    Kanzaki, Mamoru
    Kassim, Abdul Rahman
    [J]. GLOBAL CHANGE BIOLOGY, 2015, 21 (02) : 528 - 549
  • [2] Bjornstad Ottar N, 2022, CRAN, DOI 10.32614/CRAN.package.ncf
  • [3] Bourg N. A., 2013, Ecology, V94, P2111, DOI 10.1890/13-0010.1
  • [4] Assessment of Bias in Pan-Tropical Biomass Predictions
    Burt, Andrew
    Calders, Kim
    Cuni-Sanchez, Aida
    Gomez-Dans, Jose
    Lewis, Philip
    Lewis, Simon L.
    Malhi, Yadvinder
    Phillips, Oliver L.
    Disney, Mathias
    [J]. FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2020, 3
  • [5] Chapman B., 2018, D80829 NASA JET PROP
  • [6] Ground Data are Essential for Biomass Remote Sensing Missions
    Chave, Jerome
    Davies, Stuart J.
    Phillips, Oliver L.
    Lewis, Simon L.
    Sist, Plinio
    Schepaschenko, Dmitry
    Armston, John
    Baker, Tim R.
    Coomes, David
    Disney, Mathias
    Duncanson, Laura
    Herault, Bruno
    Labriere, Nicolas
    Meyer, Victoria
    Rejou-Mechain, Maxime
    Scipal, Klaus
    Saatchi, Sassan
    [J]. SURVEYS IN GEOPHYSICS, 2019, 40 (04) : 863 - 880
  • [7] Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
    Clark, Deborah A.
    Asao, Shinichi
    Fisher, Rosie
    Reed, Sasha
    Reich, Peter B.
    Ryan, Michael G.
    Wood, Tana E.
    Yang, Xiaojuan
    [J]. BIOGEOSCIENCES, 2017, 14 (20) : 4663 - 4690
  • [8] ForestGEO: Understanding forest diversity and dynamics through a global observatory network
    Davies, Stuart J.
    Abiem, Iveren
    Abu Salim, Kamariah
    Aguilar, Salomon
    Allen, David
    Alonso, Alfonso
    Anderson-Teixeira, Kristina
    Andrade, Ana
    Arellano, Gabriel
    Ashton, Peter S.
    Baker, Patrick J.
    Baker, Matthew E.
    Baltzer, Jennifer L.
    Basset, Yves
    Bissiengou, Pulcherie
    Bohlman, Stephanie
    Bourg, Norman A.
    Brockelman, Warren Y.
    Bunyavejchewin, Sarayudh
    Burslem, David F. R. P.
    Cao, Min
    Cardenas, Dairon
    Chang, Li-Wan
    Chang-Yang, Chia-Hao
    Chao, Kuo-Jung
    Chao, Wei-Chun
    Chapman, Hazel
    Chen, Yu-Yun
    Chisholm, Ryan A.
    Chu, Chengjin
    Chuyong, George
    Clay, Keith
    Comita, Liza S.
    Condit, Richard
    Cordell, Susan
    Dattaraja, Handanakere S.
    de Oliveira, Alexandre Adalardo
    den Ouden, Jan
    Detto, Matteo
    Dick, Christopher
    Du, Xiaojun
    Duque, Alvaro
    Ediriweera, Sisira
    Ellis, Erle C.
    Obiang, Nestor Laurier Engone
    Esufali, Shameema
    Ewango, Corneille E. N.
    Fernando, Edwino S.
    Filip, Jonah
    Fischer, Gunter A.
    [J]. BIOLOGICAL CONSERVATION, 2021, 253
  • [9] Estimating forest above-ground biomass with terrestrial laser scanning: Current status and future directions
    Demol, Miro
    Verbeeck, Hans
    Gielen, Bert
    Armston, John
    Burt, Andrew
    Disney, Mathias
    Duncanson, Laura
    Hackenberg, Jan
    Kukenbrink, Daniel
    Lau, Alvaro
    Ploton, Pierre
    Sewdien, Artie
    Stovall, Atticus
    Takoudjou, Stephane Momo
    Volkova, Liubov
    Weston, Christopher
    Wortel, Verginia
    Calders, Kim
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (08): : 1628 - 1639
  • [10] GEDI launches a new era of biomass inference from space
    Dubayah, Ralph
    Armston, John
    Healey, Sean P.
    Bruening, Jamis M.
    Patterson, Paul L.
    Kellner, James R.
    Duncanson, Laura
    Saarela, Svetlana
    Stahl, Goran
    Yang, Zhiqiang
    Tang, Hao
    Blair, J. Bryan
    Fatoyinbo, Lola
    Goetz, Scott
    Hancock, Steven
    Hansen, Matthew
    Hofton, Michelle
    Hurtt, George
    Luthcke, Scott
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (09)