Classes of Harmonic Functions Related to Mittag-Leffler Function

被引:2
|
作者
Al-Dohiman, Abeer A. [1 ]
Frasin, Basem Aref [2 ]
Tasar, Naci [3 ]
Sakar, Fethiye Muge [3 ]
机构
[1] Jouf Univ, Fac Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[2] Al al Bayt Univ, Fac Sci, Dept Math, Mafraq 25113, Jordan
[3] Dicle Univ, Fac Econ & Adm Sci, Dept Management, TR-21280 Diyarbakir, Turkiye
关键词
harmonic; univalent functions; harmonic starlike; harmonic convex; Mittag-Leffler function; HYPERGEOMETRIC-FUNCTIONS; UNIVALENT-FUNCTIONS; STARLIKE; SUBCLASSES; CONNECTIONS; CONVEX;
D O I
10.3390/axioms12070714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to find new inclusion relations of the harmonic class HF((sic),?) with the subclasses S-HF*,K-HF and T-HF(N)(t) of harmonic functions by applying the convolution operator T(I) associated with the Mittag-Leffler function. Further for (sic) = 0, several special cases of the main results are also obtained.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [22] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [23] Inclusion and Convolution Features of Univalent Meromorphic Functions Correlating with Mittag-Leffler Function
    Ghanim, F.
    Al-Janaby, Hiba F.
    FILOMAT, 2020, 34 (07) : 2141 - 2150
  • [24] Jackson Differential Operator Associated with Generalized Mittag-Leffler Function
    Attiya, Adel A.
    Yassen, Mansour F.
    Albaid, Abdelhamid
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [25] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [26] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [27] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [28] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [29] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [30] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58