Prime divisors of l-Genocchi numbers and the ubiquity of Ramanujan-style congruences of level l

被引:2
作者
Moree, Pieter [1 ]
Sgobba, Pietro [2 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Univ Luxembourg, Dept Math, 6 Ave Fonte, L-4364 Esch sur Alzette, Luxembourg
关键词
l-Genocchi numbers; l-regularity; Ramanujan type congruences; Artin's primitive root conjecture; ARITHMETIC-PROGRESSION; CONJECTURE; FERMAT;
D O I
10.1016/j.jnt.2023.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 8 be any fixed prime number. We define the 8-Genocchi numbers by Gn := 8(1 - 8n)Bn, with Bn the n-th Bernoulli number. They are integers. We introduce and study a variant of Kummer's notion of regularity of primes. We say that an odd prime p is 8-Genocchi irregular if it divides at least one of the 8-Genocchi numbers G2, G4, ... , Gp-3, and 8 -regular otherwise. With the help of techniques used in the study of Artin's primitive root conjecture, we give asymptotic estimates for the number of 8-Genocchi irregular primes in a prescribed arithmetic progression in case 8 is odd. The case 8 = 2 was already dealt with by Hu et al. (2019) [14]. Using similar methods we study the prime factors of (1-8n)B2n/2n and (1 + 8n)B2n/2n. This allows us to estimate the number of primes p & LE; x for which there exist modulo p Ramanujan-style congruences between the Fourier coefficients of an Eisenstein series and some cusp form of prime level 8.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 184
页数:38
相关论文
共 35 条
[1]  
Apostol T, 1976, INTRO ANAL NUMBER TH
[2]  
Arakawa T, 2014, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-4-431-54919-2
[3]   CYCLIC SUBGROUPS OF PRIME RESIDUE GROUP [J].
BEYL, FR .
AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (01) :46-48
[4]  
Borevich A. I., 1966, NUMBER THEORY, V20
[5]  
Daileda RC, 2022, Arxiv, DOI arXiv:2112.09080
[6]   BROWKIN'S DISCRIMINATOR CONJECTURE [J].
Ciolan, Alexandru ;
Moree, Pieter .
COLLOQUIUM MATHEMATICUM, 2019, 156 (01) :25-56
[7]  
Cox D. A., 1989, PRIMES FORM X2 NY2 F, DOI 10.1002/9781118032756
[8]   COMBINATORY INTERPRETATIONS OF GENOCCHI NUMBERS [J].
DUMONT, D .
DUKE MATHEMATICAL JOURNAL, 1974, 41 (02) :305-318
[9]  
GRANVILLE A, 1988, T AM MATH SOC, V306, P329