Some improved results on Berry-Esseen bounds for strong mixing random variables and applications

被引:1
作者
Wu, Yi [1 ]
Hu, Tien-Chung [2 ]
Volodin, Andrei [3 ,4 ,5 ]
Wang, Xuejun [6 ]
机构
[1] Chizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou, Peoples R China
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu, Taiwan
[3] Xiamen Univ Technol, Sino Canada Res Ctr Nonlinear Dynam & Noise Contro, Xiamen, Fujian, Peoples R China
[4] Univ Regina, Xiamen Univ Technol, Xiamen, Fujian, Peoples R China
[5] Univ Regina, Dept Mathematicsand Stat, Regina, SK, Canada
[6] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
关键词
Berry-Esseen bound; alpha-mixing random variables; sample quantiles; central limit theorem; SAMPLE QUANTILES; BAHADUR REPRESENTATION; SEQUENCES; THEOREM;
D O I
10.1080/02331888.2023.2213460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we mainly establish a general form of Berry-Esseen bound for a-mixing random variables. With different choices of the parameters, the rates are shown as O(n(-3/26)), O(n(-1/6)), and approximately O(n(-1/4)). These results improved some corresponding ones in the literature. An application to the Berry-Esseen bound of sample quantiles is further provided. Moreover, some simulations are also carried out to support the theoretical results.
引用
收藏
页码:740 / 760
页数:21
相关论文
共 23 条
  • [12] Sen PK., 1972, J MULTIVARIATE ANAL, V2, P77, DOI DOI 10.1016/0047-259X(72)90011-5
  • [13] Shan Chao Yang, 2006, High Energy Physics and Nuclear Physics, V30, P1163
  • [14] Shiryaev A. N., 1996, PROBABILITY, DOI [10.1007/978-1-4757-2539-1, DOI 10.1007/978-1-4757-2539-1]
  • [15] The Bahadur representation for sample quantiles under weak dependence
    Sun, SX
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (12) : 1238 - 1244
  • [16] THE BERRY-ESSEEN BOUND FOR ρ-MIXING RANDOM VARIABLES AND ITS APPLICATIONS IN NONPARAMETRIC REGRESSION MODEL
    Wang, X. J.
    Hu, S. H.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 63 (03) : 479 - 499
  • [17] Asymptotics for the linear kernel quantile estimator
    Wang, Xuejun
    Wu, Yi
    Yu, Wei
    Yang, Wenzhi
    Hu, Shuhe
    [J]. TEST, 2019, 28 (04) : 1144 - 1174
  • [18] Bahadur representation of linear kernel quantile estimator of VaR under α-mixing assumptions
    Wei, Xianglan
    Yang, Shanchao
    Yu, Keming
    Yang, Xin
    Xing, Guodong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1620 - 1634
  • [19] CONDITIONS FOR LINEAR-PROCESSES TO BE STRONG-MIXING
    WITHERS, CS
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (04): : 477 - 480
  • [20] Maximal moment inequality for partial sums of strong mixing sequences and application
    Yang, Shan Chao
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (06) : 1013 - 1024