Diagnosis and detection of COVID-19 infection on X-Ray and CT scans using deep learning based generative adversarial network

被引:0
|
作者
Deepa, S. [1 ,2 ]
Shakila, S. [1 ]
机构
[1] Bharathidasan Univ, Govt Arts Coll, Dept Comp Sci, Trichy, Tamilnadu, India
[2] Bharathidasan Univ, Govt Arts Coll, Dept Comp Sci, Trichy 620022, Tamilnadu, India
关键词
Chest X-rays or CT scans; COVID-19; Deep learning and generative adversarial network;
D O I
10.1080/21681163.2023.2186143
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
COVID-19 is presently one of the world's most serious health threats. However, PCR test kits are in poor supply, and the false-negative rate is significant in many countries. Patient triage is critical, and machine learning may be used to classify COVID-19 instances in chest X-ray or CT. X-rays scans will be utilised to extract and assess the pneumonia infection in the lungs caused by COVID-19. On the basis of GAN and FCN models, an image deep learning method is given that utilises these two models: GAN and FCN. First and foremost, the generator's network structure has been upgraded. With residual modules, convolutional learning can be more flexible in terms of how it responds to changes in the output. After reducing the sum of channels in the input feature by half, a larger convolution kernel is applied. Convolution and deconvolution layers are connected via a U-shaped network to prevent low-level info exchange. The GAN-FCN model achieved a CT scan accuracy of 94.32 percent and an X-ray picture accuracy of 95.62 percent, while existing deep learning models achieved a CT scan accuracy of almost 92 percent and an X-ray image accuracy of nearly 94 percent.
引用
收藏
页码:1742 / 1752
页数:11
相关论文
共 50 条
  • [41] Deep learning based detection and analysis of COVID-19 on chest X-ray images
    Jain, Rachna
    Gupta, Meenu
    Taneja, Soham
    Hemanth, D. Jude
    APPLIED INTELLIGENCE, 2021, 51 (03) : 1690 - 1700
  • [42] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [43] COVID-19 severity detection using chest X-ray segmentation and deep learning
    Singh, Tinku
    Mishra, Suryanshi
    Kalra, Riya
    Kumar, Manish
    Kim, Taehong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Deep learning approaches for COVID-19 detection based on chest X-ray images
    Ismael, Aras M.
    Sengur, Abdulkadir
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
  • [45] Deep learning based detection of COVID-19 from chest X-ray images
    Sarra Guefrechi
    Marwa Ben Jabra
    Adel Ammar
    Anis Koubaa
    Habib Hamam
    Multimedia Tools and Applications, 2021, 80 : 31803 - 31820
  • [46] Detection of COVID-19 in Chest X-ray images using Transfer Learning with Deep Convolutional Neural Network
    Vogado, Luis
    Vieira, Pablo
    Neto, Pedro Santos
    Lopes, Lucas
    Silva, Gleison
    Araujo, Flavio
    Veras, Rodrigo
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 629 - 636
  • [47] Conv-CapsNet: capsule based network for COVID-19 detection through X-Ray scans
    Sharma, Pulkit
    Arya, Rhythm
    Verma, Richa
    Verma, Bindu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 28521 - 28545
  • [48] FBSED based automatic diagnosis of COVID-19 using X-ray and CT images
    Chaudhary, Pradeep Kumar
    Pachori, Ram Bilas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [49] Deep learning assisted COVID-19 detection using full CT-scans
    Rohila, Varan Singh
    Gupta, Nitin
    Kaul, Amit
    Sharma, Deepak Kumar
    INTERNET OF THINGS, 2021, 14
  • [50] Deep learning based detection of COVID-19 from chest X-ray images
    Guefrechi, Sarra
    Ben Jabra, Marwa
    Ammar, Adel
    Koubaa, Anis
    Hamam, Habib
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31803 - 31820