Coronavirus RNA-dependent RNA polymerase interacts with the p50 regulatory subunit of host DNA polymerase delta and plays a synergistic role with RNA helicase in the induction of DNA damage response and cell cycle arrest in the S phase

被引:4
|
作者
Quan, Li [1 ,2 ]
Sun, Xinxin [1 ,2 ]
Xu, Linghui [2 ]
Chen, Rui Ai [1 ]
Liu, Ding Xiang [1 ,2 ]
机构
[1] Ctr Guangdong, Zhaoqing Branch, Lab Lingnan Modern Agr Sci & Technol, Zhaoqing, Peoples R China
[2] South China Agr Univ, Integrat Microbiol Res Ctr, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Coronavirus; nsp12; DNA polymerase delta p50 subunit; interaction; cell cycle arrest; INFECTIOUS-BRONCHITIS VIRUS; SARS-COV; PROTEIN; APOPTOSIS; ACTIVATION; ZETA;
D O I
10.1080/22221751.2023.2176008
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Disruption of the cell cycle is a common strategy shared by many viruses to create a conducible cellular microenvironment for their efficient replication. We have previously shown that infection of cells with gammacoronavirus infectious bronchitis virus (IBV) activated the theataxia-telangiectasia mutated (ATM) Rad3-related (ATR)/checkpoint kinase 1 (Chk1) pathway and induced cell cycle arrest in S and G2/M phases, partially through the interaction of nonstructural protein 13 (nsp13) with the p125 catalytic subunit of DNA polymerase delta (pol delta). In this study, we show, by GST pulldown, co-immunoprecipitation and immunofluorescent staining, that IBV nsp12 directly interacts with the p50 regulatory subunit of pol delta in vitro and in cells overexpressing the two proteins as well as in cells infected with a recombinant IBV harbouring an HA-tagged nsp12. Furthermore, nsp12 from severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 was also able to interact with p50. These interactions play a synergistic role with nsp13 in the induction of S phase arrest. The fact that subunits of an essential cellular DNA replication machinery physically associate with two core replication enzymes from three different coronaviruses highlights the importance of these associations in coronavirus replication and virus-host interaction, and reveals the potential of targeting these subunits for antiviral intervention.
引用
收藏
页数:11
相关论文
共 2 条
  • [1] The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage
    Nicol, S. M.
    Bray, S. E.
    Black, H. Derek
    Lorimore, S. A.
    Wright, E. G.
    Lane, D. P.
    Meek, D. W.
    Coates, P. J.
    Fuller-Pace, F. V.
    ONCOGENE, 2013, 32 (29) : 3461 - 3469
  • [2] The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage
    S M Nicol
    S E Bray
    H Derek Black
    S A Lorimore
    E G Wright
    D P Lane
    D W Meek
    P J Coates
    F V Fuller-Pace
    Oncogene, 2013, 32 : 3461 - 3469