Simple lattices and free algebras of modular forms

被引:2
作者
Wang, Haowu [1 ]
Williams, Brandon [2 ]
机构
[1] Inst Basic Sci IBS, Ctr Geometry & Phys, Pohang 37673, South Korea
[2] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
关键词
Symmetric domains of type IV; Modular forms on orthogonal groups; Simple lattices; Reflection groups; Borcherds products; AUTOMORPHIC PRODUCTS; BORCHERDS PRODUCTS; SINGULAR WEIGHT; GRADED RINGS; CLASSIFICATION; VARIETIES; THEOREM;
D O I
10.1016/j.aim.2022.108835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the algebras of modular forms on type IV symmetric domains for simple lattices; that is, lattices for which every Heegner divisor occurs as the divisor of a Borcherds product. For every simple lattice L of signature (n, 2) with 3 < n < 10, we prove that the graded algebra of modular forms for the maximal reflection subgroup of the orthogonal group of L is freely generated. We also show that, with five exceptions, the graded algebra of modular forms for the maximal reflection subgroup of the discriminant kernel of L is also freely generated.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:51
相关论文
共 37 条
[1]   Simple graded rings of Siegel modular forms, differential operators and Borcherds products [J].
Aoki, H ;
Ibukiyama, T .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (03) :249-279
[2]   COMPACTIFICATION OF ARITHMETIC QUOTIENTS OF BOUNDED SYMMETRIC DOMAINS [J].
BAILY, WL ;
BOREL, A .
ANNALS OF MATHEMATICS, 1966, 84 (03) :442-&
[3]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[4]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[5]   LATTICES WITH MANY BORCHERDS PRODUCTS [J].
Bruinier, Jan Hendrik ;
Ehlen, Stephan ;
Freitag, Eberhard .
MATHEMATICS OF COMPUTATION, 2016, 85 (300) :1953-1981
[6]   On the converse theorem for Borcherds products [J].
Bruinier, Jan Hendrik .
JOURNAL OF ALGEBRA, 2014, 397 :315-342
[7]  
Bruinier JH, 2002, LECT NOTES MATH, V1780, P1
[8]   Graded rings of Hermitian modular forms of degree 2 [J].
Dern, T ;
Krieg, A .
MANUSCRIPTA MATHEMATICA, 2003, 110 (02) :251-272
[9]   The graded ring of modular forms on the Cayley half-space of degree two [J].
Dieckmann, C. ;
Krieg, A. ;
Woitalla, M. .
RAMANUJAN JOURNAL, 2019, 48 (02) :385-398
[10]   Automorphic products of singular weight for simple lattices [J].
Dittmann, Moritz ;
Hagemeier, Heike ;
Schwagenscheidt, Markus .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) :585-603