Ideals with Linear Quotients and Componentwise Polymatroidal Ideals

被引:2
作者
Bandari, Somayeh [1 ]
Qureshi, Ayesha Asloob [2 ]
机构
[1] Buein Zahra Tech Univ, Dept Math, Buein Zahra, Qazvin, Iran
[2] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Tuzla, Ista, Turkiye
关键词
Polymatroidal ideals; componentwise polymatroidal ideals; strong exchange property; linear quotients;
D O I
10.1007/s00009-023-02264-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If I is a monomial ideal with linear quotients, then it has componentwise linear quotients. However, the converse of this statement is an open question. In this paper, we provide two classes of ideals for which the converse of this statement holds. First class is the componentwise polymatroidal ideals in K[x, y] and the second one is the componentwise polymatroidal ideals with strong exchange property.
引用
收藏
页数:15
相关论文
共 9 条
[1]   On the Polymatroidal Property of Monomial Ideals with a View Towards Orderings of Minimal Generators [J].
Bandari, Somayeh ;
Rahmati-Asghar, Rahim .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (03) :657-666
[2]   Monomial localizations and polymatroidal ideals [J].
Bandari, Somayeh ;
Herzog, Juergen .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (04) :752-763
[3]   Graded rings associated with contracted ideals [J].
Conca, A ;
De Negri, E ;
Jayanthan, AV ;
Rossi, ME .
JOURNAL OF ALGEBRA, 2005, 284 (02) :593-626
[4]   Cohen-Macaulay polyrnatroidal ideals [J].
Herzog, J ;
Hibi, T .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (04) :513-517
[5]  
Herzog J, 2005, OSAKA J MATH, V42, P807
[6]  
Herzog J., 2002, Homology Homotopy Appl, V4, P277
[7]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[8]   Ideals with linear quotients [J].
Jahan, Ali Soleyman ;
Zheng, Xinxian .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (01) :104-110
[9]   INTEGRAL CLOSURE AND OTHER OPERATIONS ON MONOMIAL IDEALS [J].
Quinonez, Veronica Crispin .
JOURNAL OF COMMUTATIVE ALGEBRA, 2010, 2 (03) :359-386