Integrative multi-omics analysis reveals the crucial biological pathways involved in the adaptive response to NaCl stress in peanut seedlings

被引:4
|
作者
Zhang, Nan [1 ]
Zhang, He [1 ]
Lv, Zhenghao [1 ]
Bai, Baiyi [2 ]
Ren, Jingyao [1 ]
Shi, Xiaolong [1 ]
Kang, Shuli [1 ]
Zhao, Xinhua [1 ]
Yu, Haiqiu [1 ,2 ]
Zhao, Tianhong [1 ]
机构
[1] Shenyang Agr Univ, Coll Agr, Shenyang 110866, Liaoning, Peoples R China
[2] Liaoning Agr Vocat & Tech Coll, Sch Agr & Hort, Yingkou 115009, Liaoning, Peoples R China
关键词
SALT-STRESS; TOLERANCE; METABOLOMICS; GROWTH; WALNUT;
D O I
10.1111/ppl.14266
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Integrative multi-omics analysis reveals a novel subtype of hepatocellular carcinoma with biological and clinical relevance
    Li, Shizhou
    Lin, Yan
    Gao, Xing
    Zeng, Dandan
    Cen, Weijie
    Su, Yuejiao
    Su, Jingting
    Zeng, Can
    Huang, Zhenbo
    Zeng, Haoyu
    Huang, Shilin
    Tang, Minchao
    Li, Xiaoqing
    Luo, Min
    Huang, Zhihu
    Liang, Rong
    Ye, Jiazhou
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [2] Integrative Placental Multi-Omics Analysis Reveals Perturbed Pathways and Potential Prognostic Biomarkers in Gestational Hypertension
    Varghese, Bincy
    Babu, Sreeranjini
    Jala, Aishwarya
    Das, Panchanan
    Raju, Rajesh
    Borkar, Roshan M.
    Adela, Ramu
    ARCHIVES OF MEDICAL RESEARCH, 2024, 55 (01)
  • [3] An integrated multi-omics analysis reveals osteokines involved in global regulation
    Liang, Wenquan
    Wei, Tiantian
    Hu, Le
    Chen, Meijun
    Tong, Liping
    Zhou, Wu
    Duan, Xingwei
    Zhao, Xiaoyang
    Zhou, Weijie
    Jiang, Qing
    Xiao, Guozhi
    Zou, Weiguo
    Chen, Di
    Zou, Zhipeng
    Bai, Xiaochun
    CELL METABOLISM, 2024, 36 (05) : 1144 - 1163.e7
  • [4] Multi-omics analysis reveals the molecular response to heat stress in a "red tide" dinoflagellate
    Dougan, Katherine E.
    Deng, Zhi-Luo
    Woehlbrand, Lars
    Reuse, Carsten
    Bunk, Boyke
    Chen, Yibi
    Hartlich, Juliane
    Hiller, Karsten
    John, Uwe
    Kalvelage, Jana
    Mansky, Johannes
    Neumann-Schaal, Meina
    Overmann, Joerg
    Petersen, Joern
    Sanchez-Garcia, Selene
    Schmidt-Hohagen, Kerstin
    Shah, Sarah
    Sproeer, Cathrin
    Sztajer, Helena
    Wang, Hui
    Bhattacharya, Debashish
    Rabus, Ralf
    Jahn, Dieter
    Chan, Cheong Xin
    Wagner-Doebler, Irene
    GENOME BIOLOGY, 2023, 24 (01)
  • [5] Multi-omics analysis reveals the molecular response to heat stress in a “red tide” dinoflagellate
    Katherine E. Dougan
    Zhi-Luo Deng
    Lars Wöhlbrand
    Carsten Reuse
    Boyke Bunk
    Yibi Chen
    Juliane Hartlich
    Karsten Hiller
    Uwe John
    Jana Kalvelage
    Johannes Mansky
    Meina Neumann-Schaal
    Jörg Overmann
    Jörn Petersen
    Selene Sanchez-Garcia
    Kerstin Schmidt-Hohagen
    Sarah Shah
    Cathrin Spröer
    Helena Sztajer
    Hui Wang
    Debashish Bhattacharya
    Ralf Rabus
    Dieter Jahn
    Cheong Xin Chan
    Irene Wagner-Döbler
    Genome Biology, 24
  • [6] Multi-omics analysis reveals novel causal pathways in psoriasis pathogenesis
    Guo, Hua
    Gao, Jinyang
    Gong, Liping
    Wang, Yanqing
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [7] Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact
    da Silveira, Willian A.
    Fazelinia, Hossein
    Rosenthal, Sara Brin
    Laiakis, Evagelia C.
    Kim, Man S.
    Meydan, Cem
    Kidane, Yared
    Rathi, Komal S.
    Smith, Scott M.
    Stear, Benjamin
    Ying, Yue
    Zhang, Yuanchao
    Foox, Jonathan
    Zanello, Susana
    Crucian, Brian
    Wang, Dong
    Nugent, Adrienne
    Costa, Helio A.
    Zwart, Sara R.
    Schrepfer, Sonja
    Elworth, R. A. Leo
    Sapoval, Nicolae
    Treangen, Todd
    MacKay, Matthew
    Gokhale, Nandan S.
    Horner, Stacy M.
    Singh, Larry N.
    Wallace, Douglas C.
    Willey, Jeffrey S.
    Schisler, Jonathan C.
    Meller, Robert
    McDonald, J. Tyson
    Fisch, Kathleen M.
    Hardiman, Gary
    Taylor, Deanne
    Mason, Christopher E.
    Costes, Sylvain, V
    Beheshti, Afshin
    CELL, 2020, 183 (05) : 1185 - +
  • [8] Integrative multi-omics analysis reveals molecular signatures of central obesity in children
    Zhao, Chengzhi
    An, Xizhou
    Xiao, Leyuan
    Chen, Jingyu
    Huang, Daochao
    Chen, Lijing
    Fang, Shenying
    Liang, Xiaohua
    PEDIATRIC RESEARCH, 2025,
  • [9] Integrative multi-omics analysis of chilling stress in pumpkin (Cucurbita moschata)
    Li, Fengmei
    Liu, Bobo
    Zhang, Hui
    Zhang, Jiuming
    Cai, Jinling
    Cui, Jian
    BMC GENOMICS, 2024, 25 (01):
  • [10] Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments
    Vilarrasa-Blasi, Josep
    Vellosillo, Tamara
    Jinkerson, Robert E.
    Fauser, Friedrich
    Xiang, Tingting
    Minkoff, Benjamin B.
    Wang, Lianyong
    Kniazev, Kiril
    Guzman, Michael
    Osaki, Jacqueline
    Barrett-Wilt, Gregory A.
    Sussman, Michael R.
    Jonikas, Martin C.
    Dinneny, Jose R.
    NATURE COMMUNICATIONS, 2024, 15 (01)