FeSe2 Graphite Intercalation Compound as Anode Materials for Sodium Ion Batteries

被引:5
作者
Wang, Haodong [1 ,2 ,3 ,4 ]
Zhang, Kai [2 ,3 ,4 ]
Zheng, Jun [2 ,3 ,4 ]
Wang, Gang [2 ,3 ,4 ]
Fu, Wenwu [2 ,3 ,4 ]
Hao, Yaowei [1 ,2 ,3 ,4 ]
Zhao, Yafang [1 ,2 ,3 ,4 ]
Cao, Xiaocao [2 ,3 ,4 ]
Lin, Zhiguang [2 ,3 ,4 ]
Liu, Jiayi [2 ,3 ,4 ]
Zhang, Ming [2 ,3 ,4 ]
Shen, Zhongrong [2 ,3 ,4 ]
机构
[1] Fujian Normal Univ, Coll Chem & Meterials Sci, Fuzhou 350007, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Key Lab Nanomat, Fuzhou 350002, Peoples R China
[4] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Xiamen Key Lab Rare Earth Photoelect Funct Mat, Xiamen 361021, Peoples R China
基金
芬兰科学院;
关键词
hydrothermal synthesis; ball milling; graphiteintercalation compound; intercalated structure; FeSe2; HIGH-PERFORMANCE ANODE; POROUS CARBON; LITHIUM; GRAPHENE; ARCHITECTURES; COMPOSITES; CAPACITY; SELENIUM; STORAGE; HYBRID;
D O I
10.1021/acsaelm.3c01355
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on theoretical calculations, the molecule predominantly generated by the combination of sodium with graphite is identified as NaC186. Consequently, this compound has a relatively limited capacity for sodium storage, amounting to only 36 mA h g(-1). In this study, we construct FeSe2 graphite intercalation compounds (FeSe2-GIC) by in situ inserting FeSe2 between the graphite interlayers by a hydrothermal process. The resulting FeSe2-GIC material is then subjected to ball milling to form the FeSe2-GIC-BM. The FeSe2 material was found to be tightly intercalated within the graphite layers, resulting in a limited volume expansion and improved electrical conductivity. The electrochemical test results indicate that the FeSe2-GIC-BM anode exhibits a remarkable electrochemical performance. It exhibits an initial specific discharge capacity of 676.2 mA h g(-1) at a current density of 0.1 A g(-1) and a specific discharge capacity of 425.0 mA h g(-1) at a current density of 5 A g(-1). After 1200 cycles, the observed reversible capacity remains at 182.9 mA h g(-1). The exceptional storage and cycling characteristics can be attributed to the distinctive layered structure.
引用
收藏
页码:6964 / 6973
页数:10
相关论文
共 50 条
[41]   Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries [J].
Luo, Xu-Feng ;
Yang, Cheng-Hsien ;
Peng, You-Yu ;
Pu, Nen-Wen ;
Ger, Ming-Der ;
Hsieh, Chien-Te ;
Chang, Jeng-Kuei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (19) :10320-10326
[42]   N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: A potential large-scale production technique for high-performance anode materials of sodium ion batteries [J].
Men, Shuang ;
Lin, Jiajv ;
Zhou, Yuan ;
Kang, Xiongwu .
JOURNAL OF POWER SOURCES, 2021, 485
[43]   RECENT ADVANCES IN SODIUM INTERCALATION POSITIVE ELECTRODE MATERIALS FOR SODIUM ION BATTERIES [J].
Xu, Jing ;
Lee, Dae Hoe ;
Meng, Ying Shirley .
FUNCTIONAL MATERIALS LETTERS, 2013, 6 (01)
[44]   Tin and graphite based nanocomposites: Potential anode for sodium ion batteries [J].
Datta, Moni Kanchan ;
Epur, Rigved ;
Saha, Partha ;
Kadakia, Karan ;
Park, Sung Kyoo ;
Kuma, Prashant N. .
JOURNAL OF POWER SOURCES, 2013, 225 :316-322
[45]   Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage [J].
Zhao, Zhifan ;
Teng, Xiaojing ;
Xiong, Qinqin ;
Chi, Hongzhong ;
Yuan, Yongjun ;
Qin, Haiying ;
Ji, Zhenguo .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 29
[46]   Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries [J].
Wang, Pengzi ;
Zhu, Xiaoshu ;
Wang, Qiaoqiao ;
Xu, Xin ;
Zhou, Xiaosi ;
Bao, Jianchun .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (12) :5761-5769
[47]   Temperature effects on hard carbon derived from sawdust as anode materials for sodium ion batteries [J].
Liu, Zhi-Ting ;
Hsieh, Tzu-Hsien ;
Huang, Cheng-Wei ;
Lee, Meng-Lun ;
Liu, Wei-Ren .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 154
[48]   Layered metal chalcogenide based anode materials for high performance sodium ion batteries: A review [J].
Yue, Xiyan ;
Qiao, Bozheng ;
Wang, Jiajia ;
Xie, Zhengkun ;
Liu, Zhao ;
Yang, Zhengpeng ;
Abudula, Abuliti ;
Guan, Guoqing .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 185
[49]   Maximizing the rate capability of carbon-based anode materials for sodium-ion batteries [J].
Kim, Dae-Yeong ;
Li, Oi Lun ;
Kang, Jun .
JOURNAL OF POWER SOURCES, 2021, 481
[50]   Red-Phosphorus-Based Anode Materials for Sodium-Ion Batteries: Challenges and Progress [J].
Han, Zhen ;
Yang, Xiaoxue ;
Yao, Hao ;
Ran, Chaoyang ;
Guan, Chunxi ;
Lu, Ke ;
Yang, Chunliang ;
Fu, Lin .
ENERGY TECHNOLOGY, 2025, 13 (01)