FeSe2 Graphite Intercalation Compound as Anode Materials for Sodium Ion Batteries

被引:1
作者
Wang, Haodong [1 ,2 ,3 ,4 ]
Zhang, Kai [2 ,3 ,4 ]
Zheng, Jun [2 ,3 ,4 ]
Wang, Gang [2 ,3 ,4 ]
Fu, Wenwu [2 ,3 ,4 ]
Hao, Yaowei [1 ,2 ,3 ,4 ]
Zhao, Yafang [1 ,2 ,3 ,4 ]
Cao, Xiaocao [2 ,3 ,4 ]
Lin, Zhiguang [2 ,3 ,4 ]
Liu, Jiayi [2 ,3 ,4 ]
Zhang, Ming [2 ,3 ,4 ]
Shen, Zhongrong [2 ,3 ,4 ]
机构
[1] Fujian Normal Univ, Coll Chem & Meterials Sci, Fuzhou 350007, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Key Lab Nanomat, Fuzhou 350002, Peoples R China
[4] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Xiamen Key Lab Rare Earth Photoelect Funct Mat, Xiamen 361021, Peoples R China
基金
芬兰科学院;
关键词
hydrothermal synthesis; ball milling; graphiteintercalation compound; intercalated structure; FeSe2; HIGH-PERFORMANCE ANODE; POROUS CARBON; LITHIUM; GRAPHENE; ARCHITECTURES; COMPOSITES; CAPACITY; SELENIUM; STORAGE; HYBRID;
D O I
10.1021/acsaelm.3c01355
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on theoretical calculations, the molecule predominantly generated by the combination of sodium with graphite is identified as NaC186. Consequently, this compound has a relatively limited capacity for sodium storage, amounting to only 36 mA h g(-1). In this study, we construct FeSe2 graphite intercalation compounds (FeSe2-GIC) by in situ inserting FeSe2 between the graphite interlayers by a hydrothermal process. The resulting FeSe2-GIC material is then subjected to ball milling to form the FeSe2-GIC-BM. The FeSe2 material was found to be tightly intercalated within the graphite layers, resulting in a limited volume expansion and improved electrical conductivity. The electrochemical test results indicate that the FeSe2-GIC-BM anode exhibits a remarkable electrochemical performance. It exhibits an initial specific discharge capacity of 676.2 mA h g(-1) at a current density of 0.1 A g(-1) and a specific discharge capacity of 425.0 mA h g(-1) at a current density of 5 A g(-1). After 1200 cycles, the observed reversible capacity remains at 182.9 mA h g(-1). The exceptional storage and cycling characteristics can be attributed to the distinctive layered structure.
引用
收藏
页码:6964 / 6973
页数:10
相关论文
共 50 条
  • [31] Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries
    Sun, Yige
    Tang, Jie
    Zhang, Kun
    Yuan, Jinshi
    Li, Jing
    Zhu, Da-Ming
    Ozawa, Kiyoshi
    Qin, Lu-Chang
    [J]. NANOSCALE, 2017, 9 (07) : 2585 - 2595
  • [32] MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Yu, Chuanming
    Jiao, Lifang
    Chen, Jun
    [J]. NANO LETTERS, 2016, 16 (05) : 3321 - 3328
  • [33] From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries
    Liu, Kui
    Yang, Shenglong
    Luo, Luqin
    Pan, Qichang
    Zhang, Peng
    Huang, Youguo
    Zheng, Fenghua
    Wang, Hongqiang
    Li, Qingyu
    [J]. ELECTROCHIMICA ACTA, 2020, 356
  • [34] Recent advances in graphene based materials as anode materials in sodium-ion batteries
    Wasalathilake, Kimal Chandula
    Li, Henan
    Xu, Li
    Yan, Cheng
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2020, 42 : 91 - 107
  • [35] Graphite Intercalation Compounds (GICs):A New Type of Promising Anode Material for Lithium-Ion Batteries
    Wang, Fei
    Yi, Jin
    Wang, Yonggang
    Wang, Congxiao
    Wang, Jianqiang
    Xia, Yongyao
    [J]. ADVANCED ENERGY MATERIALS, 2014, 4 (02)
  • [36] Sandwich-like Cr2O3-graphite intercalation composites as high-stability anode materials for lithium-ion batteries
    Wang, Fei
    Li, Wei
    Hou, Mengyan
    Li, Chao
    Wang, Yonggang
    Xia, Yongyao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) : 1703 - 1708
  • [37] Carbon-Free TiO2 Microspheres as Anode Materials for Sodium Ion Batteries
    Hwang, Jang-Yeon
    Du, Hoang-Long
    Yun, Bin-Na
    Jeong, Min-Gi
    Kim, Ji-Su
    Kim, Hyoungchul
    Jung, Hun-Gi
    Sun, Yang-Kook
    [J]. ACS ENERGY LETTERS, 2019, 4 (02) : 494 - 501
  • [38] Nanostructured WSe2/C composites as anode materials for sodium-ion batteries
    Zhang, Zhian
    Yang, Xing
    Fu, Yun
    [J]. RSC ADVANCES, 2016, 6 (16): : 12726 - 12729
  • [39] Self-Assembled FeSe2 Microspheres with High-Rate Capability and Long-Term Stability as Anode Material for Sodium- and Potassium-Ion Batteries
    Xin, Wen
    Chen, Nan
    Wei, Zhixuan
    Wang, Chunzhong
    Chen, Gang
    Du, Fei
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2021, : 3745 - 3752
  • [40] N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: A potential large-scale production technique for high-performance anode materials of sodium ion batteries
    Men, Shuang
    Lin, Jiajv
    Zhou, Yuan
    Kang, Xiongwu
    [J]. JOURNAL OF POWER SOURCES, 2021, 485