Disproof of a conjecture on the minimum spectral radius and the domination number
被引:1
|
作者:
Hu, Yarong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Hu, Yarong
[1
,3
]
Lou, Zhenzhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Lou, Zhenzhen
[2
]
Huang, Qiongxiang
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Huang, Qiongxiang
[1
]
机构:
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[3] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
Let Gn,& gamma; be the set of all connected graphs on n vertices with domination number & gamma;. A graph is called a minimizer graph if it attains the minimum spectral radius among Gn,& gamma;. Very recently, Liu, Li and Xie (2023) [17] proved that the minimizer graph over all graphs in Gn,& gamma; must be a tree. Moreover, they determined the minimizer graph among Gn,Ln21 for even n, and posed the conjecture on the minimizer graph among Gn,L n2 1 for odd n. In this paper, we disprove the conjecture and completely determine the unique minimizer graph among Gn,L n2 1 for odd n. & COPY; 2023 Published by Elsevier Inc.
机构:
Shandong Inst Business & Technol, Sch Math, Yantai 264005, Shandong, Peoples R China
Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R ChinaShandong Inst Business & Technol, Sch Math, Yantai 264005, Shandong, Peoples R China
Feng, Lihua
Yu, Guihai
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Inst Business & Technol, Sch Math, Yantai 264005, Shandong, Peoples R ChinaShandong Inst Business & Technol, Sch Math, Yantai 264005, Shandong, Peoples R China
机构:
Ege Univ, Fac Sci, Dept Math, Izmir, TurkiyeEge Univ, Fac Sci, Dept Math, Izmir, Turkiye
Ekinci, Gulnaz Boruzanli
Bujtas, Csilla
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Pannonia, Fac Informat Technol, Veszprem, HungaryEge Univ, Fac Sci, Dept Math, Izmir, Turkiye
机构:
Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R ChinaChuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
Zhai, Mingqing
Liu, Ruifang
论文数: 0引用数: 0
h-index: 0
机构:
Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R ChinaChuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
Liu, Ruifang
Shu, Jinlong
论文数: 0引用数: 0
h-index: 0
机构:
Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R ChinaChuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China