Disproof of a conjecture on the minimum spectral radius and the domination number

被引:1
|
作者
Hu, Yarong [1 ,3 ]
Lou, Zhenzhen [2 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[3] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Domination number; Minimizer graph; GRAPHS; TREES;
D O I
10.1016/j.laa.2023.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gn,& gamma; be the set of all connected graphs on n vertices with domination number & gamma;. A graph is called a minimizer graph if it attains the minimum spectral radius among Gn,& gamma;. Very recently, Liu, Li and Xie (2023) [17] proved that the minimizer graph over all graphs in Gn,& gamma; must be a tree. Moreover, they determined the minimizer graph among Gn,Ln21 for even n, and posed the conjecture on the minimizer graph among Gn,L n2 1 for odd n. In this paper, we disprove the conjecture and completely determine the unique minimizer graph among Gn,L n2 1 for odd n. & COPY; 2023 Published by Elsevier Inc.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [31] The minimum number of vertices in uniform hypergraphs with given domination number
    Bujtas, Csilla
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCRETE MATHEMATICS, 2017, 340 (11) : 2704 - 2713
  • [32] Spectral radius of unicyclic graphs with given independence number
    Feng, Lihua
    Yu, Guihai
    UTILITAS MATHEMATICA, 2011, 84 : 33 - 43
  • [33] A proof of the conjecture regarding the sum of domination number and average eccentricity
    Du, Zhibin
    Ilic, Aleksandar
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 105 - 113
  • [34] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 1039 - 1048
  • [35] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Kinkar Ch. Das
    Muhuo Liu
    Czechoslovak Mathematical Journal, 2016, 66 : 1039 - 1048
  • [36] On the Equality of Domination Number and 2-Domination Number
    Ekinci, Gulnaz Boruzanli
    Bujtas, Csilla
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 383 - 406
  • [37] Maximization of the spectral radius of block graphs with a given dissociation number
    Das, Joyentanuj
    Mohanty, Sumit
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 465
  • [38] On the (Laplacian) spectral radius of bipartite graphs with given number of blocks
    Zhai, Mingqing
    Liu, Ruifang
    Shu, Jinlong
    ARS COMBINATORIA, 2011, 98 : 311 - 319
  • [39] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [40] Application of upper and lower bounds for the domination number to Vizing's conjecture
    Clark, WE
    Ismail, MEH
    Suen, S
    ARS COMBINATORIA, 2003, 69 : 97 - 108