Disproof of a conjecture on the minimum spectral radius and the domination number

被引:1
|
作者
Hu, Yarong [1 ,3 ]
Lou, Zhenzhen [2 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[3] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Domination number; Minimizer graph; GRAPHS; TREES;
D O I
10.1016/j.laa.2023.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gn,& gamma; be the set of all connected graphs on n vertices with domination number & gamma;. A graph is called a minimizer graph if it attains the minimum spectral radius among Gn,& gamma;. Very recently, Liu, Li and Xie (2023) [17] proved that the minimizer graph over all graphs in Gn,& gamma; must be a tree. Moreover, they determined the minimizer graph among Gn,Ln21 for even n, and posed the conjecture on the minimizer graph among Gn,L n2 1 for odd n. In this paper, we disprove the conjecture and completely determine the unique minimizer graph among Gn,L n2 1 for odd n. & COPY; 2023 Published by Elsevier Inc.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [21] Proof of a conjecture on the ε-spectral radius of trees
    Li, Jianping
    Qiu, Leshi
    Zhang, Jianbin
    AIMS MATHEMATICS, 2023, 8 (02): : 4363 - 4371
  • [22] A proof of a conjecture on the distance spectral radius
    Wang, Yanna
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 674 : 124 - 154
  • [23] The spectral radius of graphs with given independence number
    Lou, Zhenzhen
    Guo, Ji-Ming
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [24] Independence number and spectral radius of cactus graphs
    Xue, Jie
    Liu, Ruifang
    Liu, Pei
    DISCRETE APPLIED MATHEMATICS, 2024, 351 : 81 - 93
  • [25] On a conjecture about the spectral radius of block graphs
    Zhao, Jing
    Liu, Huiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 659 : 1 - 9
  • [26] About AutoGraphiX Conjecture on Domination Number and Remoteness of Graphs
    Pei, Lidan
    MATHEMATICS, 2022, 10 (19)
  • [27] Domination number in graphs with minimum degree two
    Er Fang Shan
    Moo Young Sohn
    Xu Dong Yuan
    Michael A. Henning
    Acta Mathematica Sinica, English Series, 2009, 25 : 1253 - 1268
  • [28] DOMINATION NUMBER OF GRAPHS WITH MINIMUM DEGREE FIVE
    Bujtas, Csilla
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (03) : 763 - 777
  • [29] Domination Number in Graphs with Minimum Degree Two
    Moo Young SOHN
    Michael A.HENNING
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (08) : 1253 - 1268
  • [30] Domination Number in Graphs with Minimum Degree Two
    Shan, Er Fang
    Sohn, Moo Young
    Yuan, Xu Dong
    Henning, Michael A.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (08) : 1253 - 1268