Progress in the application of dual-energy CT in pancreatic diseases

被引:3
作者
Wang, Sha [1 ]
Zhang, Yanli [1 ,2 ,3 ]
Xu, Yongsheng [1 ,2 ,3 ]
Yang, Pengcheng [2 ]
Liu, Chuncui [1 ]
Gong, Hengxin [1 ]
Lei, Junqiang [1 ,2 ,3 ,4 ]
机构
[1] Lanzhou Univ, Clin Med Coll 1, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Hosp 1, Dept Radiol, Lanzhou 730000, Peoples R China
[3] Radiol Clin Med Res Ctr Gansu Prov, Lanzhou 730000, Peoples R China
[4] 1 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China
关键词
Pancreatic diseases; Dual-energy CT; CT quantitative; VIRTUAL MONOENERGETIC IMAGES; OF-THE-ART; SPECTRAL CT; DUCTAL ADENOCARCINOMA; FORMING PANCREATITIS; COMPUTED-TOMOGRAPHY; DIAGNOSIS; CARCINOMA; DIFFERENTIATION; PATTERNS;
D O I
10.1016/j.ejrad.2023.111090
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pancreatic diseases are difficult to diagnose due to their insidious onset and complex pathophysiological developmental characteristics. In recent years, dual-energy computed tomography (DECT) imaging technology has rapidly advanced. DECT can quantitatively extract and analyze medical imaging features and establish a correlation between these features and clinical results. This feature enables the adoption of more modern and accurate clinical diagnosis and treatment strategies for patients with pancreatic diseases so as to achieve the goal of non-invasive, low-cost, and personalized treatment. The purpose of this review is to elaborate on the application of DECT for the diagnosis, biological characterization, and prediction of the survival of patients with pancreatic diseases (including pancreatitis, pancreatic cancer, pancreatic cystic tumor, pancreatic neuroendocrine tumor, and pancreatic injury) and to summarize its current limitations and future research prospects.
引用
收藏
页数:9
相关论文
共 67 条
[1]   Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma [J].
An, Chao ;
Li, Dongyang ;
Li, Sheng ;
Li, Wangzhong ;
Tong, Tong ;
Liu, Lizhi ;
Jiang, Dongping ;
Jiang, Linling ;
Ruan, Guangying ;
Hai, Ning ;
Fu, Yan ;
Wang, Kun ;
Zhuo, Shuiqing ;
Tian, Jie .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (04) :1187-1199
[2]   Economic impact of spectral body imaging in diagnosis of patients suspected for occult cancer [J].
Andersen, Michael Brun ;
Ebbesen, Dyveke ;
Thygesen, Jesper ;
Kruis, Matthijs ;
Gu, Qing ;
Dharaiya, Ekta ;
Rasmussen, Finn .
INSIGHTS INTO IMAGING, 2021, 12 (01)
[3]   Correlation Between Dual-Energy Computed Tomography Single Scan and Computed Tomography Perfusion for Pancreatic Cancer Patients: Initial Experience [J].
Bao, Jiaqi ;
Liu, Aishi ;
Zhao, Changhong ;
Hao, Fen'e ;
Su, Xiulan ;
Bao, Lili ;
Zhao, Lei .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2019, 43 (04) :599-604
[4]   The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After [J].
Bassi, Claudio ;
Marchegiani, Giovanni ;
Dervenis, Christos ;
Sarr, Micheal ;
Abu Hilal, Mohammad ;
Adham, Mustapha ;
Allen, Peter ;
Andersson, Roland ;
Asbun, Horacio J. ;
Besselink, Marc G. ;
Conlon, Kevin ;
Del Chiaro, Marco ;
Falconi, Massimo ;
Fernandez-Cruz, Laureano ;
Fernandez-Del Castillo, Carlos ;
Fingerhut, Abe ;
Friess, Helmut ;
Gouma, Dirk J. ;
Hackert, Thilo ;
Izbicki, Jakob ;
Lillemoe, Keith D. ;
Neoptolemos, John P. ;
Olah, Attila ;
Schulick, Richard ;
Shrikhande, Shailesh V. ;
Takada, Tadahiro ;
Takaori, Kyoichi ;
Traverso, William ;
Vollmer, Charles ;
Wolfgang, Christopher L. ;
Yeo, Charles J. ;
Salvia, Roberto ;
Buehler, Marcus .
SURGERY, 2017, 161 (03) :584-591
[5]   Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma [J].
Beer, Lucian ;
Toepker, Michael ;
Ba-Ssalamah, Ahmed ;
Schestak, Christian ;
Dutschke, Anja ;
Schindl, Martin ;
Wressnegger, Alexander ;
Ringl, Helmut ;
Apfaltrer, Paul .
EUROPEAN RADIOLOGY, 2019, 29 (07) :3617-3625
[6]   Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study [J].
Chen, Xiaojian ;
Oshima, Kiyoko ;
Schott, Diane ;
Wu, Hui ;
Hall, William ;
Song, Yingqiu ;
Tao, Yalan ;
Li, Dingjie ;
Zheng, Cheng ;
Knechtges, Paul ;
Erickson, Beth ;
Li, X. Allen .
PLOS ONE, 2017, 12 (06)
[7]   Quantification of pancreatic proton density fat fraction in diabetic pigs using MR imaging and IDEAL-IQ sequence [J].
Chen, Yidi ;
Long, Liling ;
Jiang, Zijian ;
Zhang, Ling ;
Zhong, Delin ;
Huang, Xialing .
BMC MEDICAL IMAGING, 2019, 19 (1)
[8]   Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy [J].
Cho, SG ;
Lee, DH ;
Lee, KY ;
Ji, H ;
Lee, KH ;
Ros, PR ;
Suh, CH .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2005, 29 (02) :163-169
[9]   Diagnosis and Detection of Pancreatic Cancer [J].
Chu, Linda C. ;
Goggins, Michael G. ;
Fishman, Elliot K. .
CANCER JOURNAL, 2017, 23 (06) :333-342
[10]   CT severity indices derived from low monoenergetic images at dual-energy CT may improve prediction of outcome in acute pancreatitis [J].
Dar, Gili ;
Goldberg, S. Nahum ;
Hiller, Nurith ;
Caplan, Nadia ;
Sosna, Jacob ;
Appelbaum, Liat ;
Lev-Cohain, Naama .
EUROPEAN RADIOLOGY, 2021, 31 (07) :4710-4719