Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane

被引:1
作者
Vishnevskaya, A. D. [1 ]
Demina, M. V. [1 ]
机构
[1] Moscow Inst Elect & Math, Higher Sch Econ, Moscow 123458, Russia
基金
俄罗斯科学基金会;
关键词
point vortex; infinite-dimensional configuration; stationary configuration; negative Pell equation; POLYNOMIALS; EQUILIBRIA; SYSTEMS;
D O I
10.1134/S0001434623070040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the study of the model of point vortices proposed by the German scientist Hermann Helmholtz. Necessary and sufficient conditions for the existence of infinitely many nonequivalent stationary configurations are found for a system consisting of two point vortices of intensity Gamma(1) and an arbitrary number of point vortices of intensity Gamma(2). A classification of such configurations is carried out. For the first time, a connection is discovered between the negative Diophantine Pell equation and stationary configurations of point vortices on the plane.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 20 条
[11]  
Helmholtz H., 1858, CRELLES J, V55, P25, DOI DOI 10.1515/CRLL.1858.55.25
[12]  
Ince EL., 1956, ORDINARY DIFFERENTIA
[13]  
Krishnamurthy V. S., 2020, Proc. A, V476, P0
[14]   Equilibrium of charges and differential equations solved by polynomials [J].
Loutsenko, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (04) :1309-1321
[15]  
Newton P.K., 2001, N VORTEX PROBLEM ANA, DOI DOI 10.1007/978-1-4684-9290-3
[16]   Minimal polynomial systems for point vortex equilibria [J].
O'Neil, Kevin A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 219 (01) :69-79
[17]   Generalized Adler - Moser and Loutsenko Polynomials for Point Vortex Equilibria [J].
O'Neil, Kevin A. ;
Cox-Steib, Nicholas .
REGULAR & CHAOTIC DYNAMICS, 2014, 19 (05) :523-532
[18]   STATIONARY CONFIGURATIONS OF POINT VORTICES [J].
ONEIL, KA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 302 (02) :383-425
[19]  
TKACHENK.VK, 1966, SOV PHYS JETP-USSR, V22, P1282