Visualizing the Mechanism Switching in High-Temperature Au-Catalyzed InAs Nanowire Growth

被引:4
|
作者
Escobar Steinvall, Simon [2 ,3 ]
Johansson, Jonas [1 ,3 ]
Lehmann, Sebastian [1 ,3 ]
Tornberg, Marcus [2 ,3 ]
Jacobsson, Daniel [3 ,4 ]
Dick, Kimberly A. [2 ,3 ]
机构
[1] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden
[2] Lund Univ, Ctr Anal & Synth, S-22100 Lund, Sweden
[3] Lund Univ, NanoLund, S-22100 Lund, Sweden
[4] Lund Univ, Natl Ctr High Resolut Elect Microscopy, S-22100 Lund, Sweden
关键词
LIQUID-SOLID MECHANISM; INTERFACE DYNAMICS; ZINC BLENDE; GAAS; WURTZITE;
D O I
10.1021/acs.cgd.3c00138
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use environmentaltransmission electron microscopyto observe in situ the switch from an axial vapor-liquid-solid(VLS) growth mechanism in Au-catalyzed InAs nanowires toward a radialvapor-solid (VS) one, dominated by layers nucleating at thetriple-phase line. At elevated temperatures, in addition to high V/IIIratios, the affinity for In in the Au catalyst will be greater thanthat of In in InAs, which in turn reduces the driving force and probabilityfor nucleation at the liquid-solid interface. Consequently,with increased temperature, the catalyst particle stops acting asa sink for incoming material and the decomposition of precursors awayfrom the catalyst increases, making radial vapor-solid growththe dominating growth mechanism. It is further observed that the growthproceeds through multistep propagation rather than a layer-by-layerpropagation under these conditions. Using in situ transmission electron microscopywe directly observe the switching from axial to radial growth in Au-catalyzedInAs nanowires and elucidate the mechanisms at play to limit vapor-liquid-solidgrowth.
引用
收藏
页码:6228 / 6232
页数:5
相关论文
共 50 条
  • [21] In situ control of Au-catalyzed chemical vapor deposited (CVD) Ge nanocone morphology by growth temperature variation
    Cho, Hans S.
    Kamins, Theodore I.
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (16-17) : 2494 - 2497
  • [22] High-temperature growth of Mn-irradiated InAs quantum dots
    Nagahara, Seiji
    Tsukamoto, Shiro
    Arakawa, Yasuhiko
    JOURNAL OF CRYSTAL GROWTH, 2007, 301 (SPEC. ISS.) : 797 - 800
  • [23] Onset of uncontrolled polytypism during the Au-catalyzed growth of wurtzite GaAs nanowires
    Peeters, Wouter H. J.
    Vettori, Marco
    Fadaly, Elham M. T.
    Danescu, Alexandre
    Mao, Chenyang
    Verheijen, Marcel A.
    Bakkers, Erik P. A. M.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (02)
  • [24] Growth mechanism of Y-Junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition
    Luo, Chunxiang
    Liu, Liany
    Jiang, Kaili
    Zhang, Lina
    Li, Qunqing
    Fan, Shoushan
    CARBON, 2008, 46 (03) : 440 - 444
  • [25] Mechanism and Origins of Product Selectivity of Au-Catalyzed Coupling Benzisoxazoles with Ynamides: A Computational Study
    Li, Ting
    Rong, Wei
    Zhang, Tian
    Li, Juan
    CHEMCATCHEM, 2020, 12 (20) : 5276 - 5283
  • [26] Kinetics and mechanism of high-temperature oxidation in air of Au-Cualloy
    Lavrenko, VA
    Kuznetsova, LI
    Malyshevskaya, AI
    POWDER METALLURGY AND METAL CERAMICS, 2005, 44 (7-8) : 377 - 381
  • [27] Kinetics and Mechanism of High-Temperature Oxidation in Air of Au - Cu Alloy
    V. A. Lavrenko
    L. I. Kuznetsova
    A. I. Malyshevskaya
    Powder Metallurgy and Metal Ceramics, 2005, 44 : 377 - 381
  • [28] Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy
    Cai, Y.
    Wong, T. L.
    Chan, S. K.
    Sou, I. K.
    Su, D. S.
    Wang, N.
    APPLIED PHYSICS LETTERS, 2008, 93 (23)
  • [29] Growth and morphological modeling of InP nanowires obtained by Au-catalyzed selective area MOMBE
    Dubrovskii, V. G.
    Timofeeva, M. A.
    Kelrich, A.
    Ritter, D.
    JOURNAL OF CRYSTAL GROWTH, 2015, 413 : 25 - 30
  • [30] A new insight into the mechanism of low-temperature Au-assisted growth of InAs nanowires
    Koryakin, Alexander A.
    Kukushkin, Sergey A.
    Kotlyar, Konstantin P.
    Ubyivovk, Evgenii D.
    Reznik, Rodion R.
    Cirlin, George E.
    CRYSTENGCOMM, 2019, 21 (32) : 4707 - 4717