Artificial Intelligence in pathology: current applications, limitations, and future directions

被引:4
作者
Sajithkumar, Akhil [1 ]
Thomas, Jubin [1 ]
Saji, Ajish Meprathumalil [1 ]
Ali, Fousiya [1 ]
Hasin, E. K. Haneena [1 ]
Adampulan, Hannan Abdul Gafoor [1 ]
Sarathchand, Swathy [2 ]
机构
[1] Malabar Dent Coll & Res Ctr, Dept Oral Pathol & Microbiol, Manoor Chekanoor Rd,Mudur PO, Edappal 679578, India
[2] Sree Narayana Inst Med Sci, Chalakka Kuthiathode Rd, Kunnukara 683594, Kerala, India
关键词
AI; Deep learning; Early diagnosis; Machine learning; Pathologist workflow; DIGITAL PATHOLOGY; COMPUTATIONAL PATHOLOGY;
D O I
10.1007/s11845-023-03479-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
PurposeGiven AI's recent success in computer vision applications, majority of pathologists anticipate that it will be able to assist them with a variety of digital pathology activities. Massive improvements in deep learning have enabled a synergy between Artificial Intelligence (AI) and deep learning, enabling image-based diagnosis against the backdrop of digital pathology. AI-based solutions are being developed to eliminate errors and save pathologists time.AimsIn this paper, we will discuss the components that went into the use of Artificial Intelligence in Pathology, its use in the medical profession, the obstacles and constraints that it encounters, and the future possibilities of AI in the medical field.ConclusionsBased on these factors, we elaborate upon the use of AI in medical pathology and provide future recommendations for its successful implementation in this field.
引用
收藏
页码:1117 / 1121
页数:5
相关论文
共 38 条
[1]   Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association [J].
Abels, Esther ;
Pantanowitz, Liron ;
Aeffner, Famke ;
Zarella, Mark D. ;
van der Laak, Jeroen ;
Bui, Marilyn M. ;
Vemuri, Venkata N. P. ;
Parwani, Anil V. ;
Gibbs, Jeff ;
Agosto-Arroyo, Emmanuel ;
Beck, Andrew H. ;
Kozlowski, Cleopatra .
JOURNAL OF PATHOLOGY, 2019, 249 (03) :286-294
[2]  
Albusays K, 2021, IEEE SOFTWARE, V38, P20
[3]   Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer [J].
Ali, H. Raza ;
Dariush, Aliakbar ;
Provenzano, Elena ;
Bardwell, Helen ;
Abraham, Jean E. ;
Iddawela, Mahesh ;
Vallier, Anne-Laure ;
Hiller, Louise ;
Dunn, Janet. A. ;
Bowden, Sarah J. ;
Hickish, Tamas ;
McAdam, Karen ;
Houston, Stephen ;
Irwin, Mike J. ;
Pharoah, Paul D. P. ;
Brenton, James D. ;
Walton, Nicholas A. ;
Earl, Helena M. ;
Caldas, Carlos .
BREAST CANCER RESEARCH, 2016, 18
[4]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[5]   Are artificial neural networks black boxes? [J].
Benitez, JM ;
Castro, JL ;
Requena, I .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05) :1156-1164
[6]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[7]   Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent [J].
Cruz-Roa, Angel ;
Gilmore, Hannah ;
Basavanhally, Ajay ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie N. C. ;
Tomaszewski, John ;
Gonzalez, Fabio A. ;
Madabhushi, Anant .
SCIENTIFIC REPORTS, 2017, 7
[8]   Artificial intelligence and computational pathology [J].
Cui, Miao ;
Zhang, David Y. .
LABORATORY INVESTIGATION, 2021, 101 (04) :412-422
[9]   Update on the Gleason grading system for prostate cancer - Results of an international consensus conference of urologic pathologists [J].
Epstein, JI ;
Allsbrook, WC ;
Amin, MB ;
Egevad, LL .
ADVANCES IN ANATOMIC PATHOLOGY, 2006, 13 (01) :57-59
[10]   Deep Learning in Radiology: Does One Size Fit All? [J].
Erickson, Bradley J. ;
Korfiatis, Panagiotis ;
Kline, Timothy L. ;
Akkus, Zeynettin ;
Philbrick, Kenneth ;
Weston, Alexander D. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) :521-526