FIRST-ORDER PONTRYAGIN MAXIMUM PRINCIPLE FOR RISK-AVERSE STOCHASTIC OPTIMAL CONTROL PROBLEMS*

被引:6
作者
Bonalli, Riccardo [1 ]
Bonnet, Benoit [2 ]
机构
[1] Univ Paris Saclay, CNRS, CtrSupelec, Lab Signaux & Syst, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
[2] Univ Toulouse, LAAS CNRS, CNRS, 7 Ave Colonel Roche, F-31400 Toulouse, France
关键词
risk-averse stochastic optimal control; Pontryagin maximum principle; first-order stochastic necessary optimality conditions; set-valued analysis;
D O I
10.1137/22M1489137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we derive first-order Pontryagin optimality conditions for risk-averse stochastic optimal control problems subject to final time inequality constraints whose costs are general, possibly nonsmooth finite coherent risk measures. Unlike preexisting contributions covering this situation, our analysis holds for classical stochastic differential equations driven by standard Brownian motions. In addition, it presents the advantages of neither involving second-order adjoint equations nor leading to the so-called weak version of the Pontryagin maximum principle, in which the maximization condition with respect to the control variable is replaced by the stationarity of the Hamiltonian.
引用
收藏
页码:1881 / 1909
页数:29
相关论文
共 22 条
[1]  
Attouch A, 2005, MOS-SIAM SER OPTIMIZ, V6, P1
[2]  
Aubin J.P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]   Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces [J].
Bonnet, Benoit ;
Frankowska, Helene .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2) :1281-1330
[4]  
BRE H., 2010, FUNCTIONAL ANAL SOBO
[5]   Risk-Sensitive Safety Analysis Using Conditional Value-at-Risk [J].
Chapman, Margaret P. ;
Bonalli, Riccardo ;
Smith, Kevin M. ;
Yang, Insoon ;
Pavone, Marco ;
Tomlin, Claire J. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) :6521-6536
[6]   A STOCHASTIC FILIPPOV THEOREM [J].
DAPRATO, G ;
FRANKOWSKA, H .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1994, 12 (04) :409-426
[7]   THE MAXIMUM PRINCIPLE FOR AN OPTIMAL SOLUTION TO A DIFFERENTIAL INCLUSION WITH END-POINTS CONSTRAINTS [J].
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (01) :145-157
[8]   Necessary conditions for stochastic optimal control problems in infinite dimensions [J].
Frankowska, Helene ;
Zhang, Xu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) :4081-4103
[9]   STOCHASTIC OPTIMAL CONTROL PROBLEMS WITH CONTROL AND INITIAL-FINAL STATES CONSTRAINTS [J].
Frankowska, Helene ;
Zhang, Haisen ;
Zhang, Xu .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (03) :1823-+
[10]   First and second order necessary conditions for stochastic optimal controls [J].
Frankowska, Helene ;
Zhang, Haisen ;
Zhang, Xu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) :3689-3736