A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations

被引:6
作者
Durmaz, Muhammet Enes [1 ]
机构
[1] Kirklareli Univ, Dept Informat Technol, TR-39100 Kirklareli, Turkiye
关键词
Finite difference scheme; Integro-differential equation; Shishkin mesh; Singular perturbation; Uniform convergence; MULTIPOINT PROBLEMS;
D O I
10.1007/s12190-023-01895-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this study is to introduce a second-order computational method to solve Volterra-Fredholm integro-differential equations involving boundary layers. To solve numerically, we establish a finite difference scheme on the Shishkin mesh using a composite trapezoidal formulae for the integral part and interpolating quadrature rules and the linear exponential basis functions for the differential part. We establish that the numerical scheme and rate of convergence are both second-order and converge uniformly with reference to the small e-parameter. The efficacy of the approach is supported by testing the numerical scheme's performance.
引用
收藏
页码:3601 / 3624
页数:24
相关论文
共 39 条
[1]   A NUMERICAL METHOD FOR A SECOND ORDER SINGULARLY PERTURBED FREDHOLM INTEGRO-DIFFERENTIAL EQUATION [J].
Amiraliyev, Gabil M. ;
Durmaz, Muhammet Enes ;
Kudu, Mustafa .
MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) :37-48
[2]  
[Anonymous], 1991, Singular perturbation methods for ordinary differential equations, DOI DOI 10.1007/978-3-540-71225-1
[3]   A comparative study of numerical methods for solving an integro-differential equation [J].
Bahuguna, D. ;
Ujlayan, A. ;
Pandey, D. N. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (09) :1485-1493
[4]   Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition [J].
Bellomo, N ;
Firmani, B ;
Guerri, L .
APPLIED MATHEMATICS LETTERS, 1999, 12 (02) :39-44
[5]   Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm-Volterra integro-differential equation [J].
Berenguer, M. I. ;
Gamez, D. ;
Lopez Linares, A. J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 :52-61
[6]  
Brunner H., 2018, Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, P205
[7]   Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations [J].
Cakir, Musa ;
Gunes, Baransel .
GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) :193-203
[8]   Integro-differential equations for option prices in exponential Levy models [J].
Cont, R ;
Voltchkova, E .
FINANCE AND STOCHASTICS, 2005, 9 (03) :299-325
[9]   Combination of Lucas wavelets with Legendre-Gauss quadrature for fractional Fredholm-Volterra integro-differential equations [J].
Dehestani, H. ;
Ordokhani, Y. ;
Razzaghi, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
[10]   An efficient numerical method for a singularly perturbed Volterra-Fredholm integro-differential equation [J].
Durmaz, Muhammet Enes ;
Yapman, Omer ;
Kudu, Mustafa ;
Amiraliyev, Gabil M. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02) :326-339