Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer

被引:10
作者
Bokhorst, John-Melle [1 ]
Ciompi, Francesco [1 ]
Ozturk, Sonay Kus [1 ]
Erdogan, Ayse Selcen Oguz [1 ]
Vieth, Michael [2 ]
Dawson, Heather [3 ]
Kirsch, Richard [4 ]
Simmer, Femke [1 ]
Sheahan, Kieran [5 ]
Lugli, Alessandro [2 ]
Zlobec, Inti [2 ]
van der Laak, Jeroen [1 ,6 ]
Nagtegaal, Iris D. [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Pathol, Med Ctr, Nijmegen, Netherlands
[2] Bayreuth Univ, Klinikum Pathol, Bayreuth, Germany
[3] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
[4] Univ Toronto, Mt Sinai Hosp, Toronto, ON, Canada
[5] St Vincents Hosp, Dept Pathol, Dublin, Ireland
[6] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
关键词
automated assessment; colorectal cancer; computational pathology; prognosis; tumor budding;
D O I
10.1016/j.modpat.2023.100233
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Tumor budding (TB), the presence of single cells or small clusters of up to 4 tumor cells at the invasive front of colorectal cancer (CRC), is a proven risk factor for adverse outcomes. International definitions are necessary to reduce interobserver variability. According to the current international guidelines, hotspots at the invasive front should be counted in hematoxylin and eosin (H & E)-stained slides. This is time-consuming and prone to interobserver variability; therefore, there is a need for computer-aided diagnosis solutions. In this study, we report an artificial intelligence-based method for detecting TB in H & E-stained whole slide images. We propose a fully automated pipeline to identify the tumor border, detect tumor buds, characterize them based on the number of tumor cells, and produce a TB density map to identify the TB hotspot. The method outputs the TB count in the hotspot as a computational biomarker. We show that the proposed automated TB detection workflow performs on par with a panel of 5 pathologists at detecting tumor buds and that the hotspot-based TB count is an independent prognosticator in both the univariate and the multivariate analysis, validated on a cohort of n 1/4 981 patients with CRC. Computer-aided detection of tumor buds based on deep learning can perform on par with expert pathologists for the detection and quantification of tumor buds in H & E-stained CRC histopathology slides, strongly facilitating the introduction of budding as an independent prognosticator in clinical routine and clinical trials. & COPY; 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:10
相关论文
共 22 条
  • [1] Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning
    Bokhorst, J. M.
    Blank, A.
    Lugli, A.
    Zlobec, I.
    Dawson, H.
    Vieth, M.
    Rijstenberg, L. L.
    Brockmoeller, S.
    Urbanowicz, M.
    Flejou, J. F.
    Kirsch, R.
    Ciompi, F.
    van der Laak, J. A. W. M.
    Nagtegaal, I. D.
    [J]. MODERN PATHOLOGY, 2020, 33 (05) : 825 - 833
  • [2] Bokhorst JM, 2021, Arxiv, DOI arXiv:2109.07892
  • [3] Brierley JD., 2017, TNM classification of malignant tumours
  • [4] Development of a semi-automated method for tumour budding assessment in colorectal cancer and comparison with manual methods
    Fisher, Natalie C.
    Loughrey, Maurice B.
    Coleman, Helen G.
    Gelbard, Melvin D.
    Bankhead, Peter
    Dunne, Philip D.
    [J]. HISTOPATHOLOGY, 2022, 80 (03) : 485 - 500
  • [5] Cancer classification using the Immunoscore: a worldwide task force
    Galon, Jerome
    Pages, Franck
    Marincola, Francesco M.
    Angell, Helen K.
    Thurin, Magdalena
    Lugli, Alessandro
    Zlobec, Inti
    Berger, Anne
    Bifulco, Carlo
    Botti, Gerardo
    Tatangelo, Fabiana
    Britten, Cedrik M.
    Kreiter, Sebastian
    Chouchane, Lotfi
    Delrio, Paolo
    Arndt, Hartmann
    Asslaber, Martin
    Maio, Michele
    Masucci, Giuseppe V.
    Mihm, Martin
    Vidal-Vanaclocha, Fernando
    Allison, James P.
    Gnjatic, Sacha
    Hakansson, Leif
    Huber, Christoph
    Singh-Jasuja, Harpreet
    Ottensmeier, Christian
    Zwierzina, Heinz
    Laghi, Luigi
    Grizzi, Fabio
    Ohashi, Pamela S.
    Shaw, Patricia A.
    Clarke, Blaise A.
    Wouters, Bradly G.
    Kawakami, Yutaka
    Hazama, Shoichi
    Okuno, Kiyotaka
    Wang, Ena
    O'Donnell-Tormey, Jill
    Lagorce, Christine
    Pawelec, Graham
    Nishimura, Michael I.
    Hawkins, Robert
    Lapointe, Rejean
    Lundqvist, Andreas
    Khleif, Samir N.
    Ogino, Shuji
    Gibbs, Peter
    Waring, Paul
    Sato, Noriyuki
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2012, 10
  • [6] Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
    Gertych, Arkadiusz
    Swiderska-Chadaj, Zaneta
    Ma, Zhaoxuan
    Ing, Nathan
    Markiewicz, Tomasz
    Cierniak, Szczepan
    Salemi, Hootan
    Guzman, Samuel
    Walts, Ann E.
    Knudsen, Beatrice S.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images
    Graham, Simon
    Quoc Dang Vu
    Raza, Shan E. Ahmed
    Azam, Ayesha
    Tsang, Yee Wah
    Kwak, Jin Tae
    Rajpoot, Nasir
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 58
  • [8] Improving tumor budding reporting in colorectal cancer: a Delphi consensus study
    Haddad, Tariq Sami
    Lugli, Alessandro
    Aherne, Susan
    Barresi, Valeria
    Terris, Benoit
    Bokhorst, John-Melle
    Brockmoeller, Scarlet Fiona
    Cuatrecasas, Miriam
    Simmer, Femke
    El-Zimaity, Hala
    Flejou, Jean-Francois
    Gibbons, David
    Cathomas, Gieri
    Kirsch, Richard
    Kuhlmann, Tine Plato
    Langner, Cord
    Loughrey, Maurice B.
    Riddell, Robert
    Ristimaki, Ari
    Kakar, Sanjay
    Sheahan, Kieran
    Treanor, Darren
    van der Laak, Jeroen
    Vieth, Michael
    Zlobec, Inti
    Nagtegaal, Iris D.
    [J]. VIRCHOWS ARCHIV, 2021, 479 (03) : 459 - 469
  • [9] Litjens G, 2022, GIGASCIENCE, P11
  • [10] Establishment and Clinical Application of an Artificial Intelligence Diagnostic Platform for Identifying Rectal Cancer Tumor Budding
    Liu, Shanglong
    Zhang, Yuejuan
    Ju, Yiheng
    Li, Ying
    Kang, Xiaoning
    Yang, Xiaojuan
    Niu, Tianye
    Xing, Xiaoming
    Lu, Yun
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11