共 25 条
CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features
被引:11
作者:
Wang, Yiang
[1
]
Wang, Mandi
[2
,3
]
Cao, Peng
[1
]
Wong, Esther M. F.
[4
]
Ho, Grace
[5
]
Lam, Tina P. W.
[5
]
Han, Lujun
[6
]
Lee, Elaine Y. P.
[1
]
机构:
[1] Univ Hong Kong, Dept Diagnost Radiol, Hong Kong, Peoples R China
[2] Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Radiol, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen, Peoples R China
[4] Pamela Youde Nethersole Eastern Hosp, Dept Radiol, Hong Kong, Peoples R China
[5] Queen Mary Hosp, Dept Radiol, Hong Kong, Peoples R China
[6] Sun Yat Sen Univ, Dept Med Imaging, State Key Lab Oncol South China,Canc Ctr, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, Guangzhou 510060, Peoples R China
关键词:
Ovarian cancer (OC);
computed tomography;
deep learning;
automated segmentation;
radiomics;
DELINEATION;
SYSTEM;
BREAST;
NET;
D O I:
10.21037/qims-22-1135
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Background: Radiomics analysis could provide complementary tissue characterization in ovarian cancer (OC). However, OC segmentation required in radiomics analysis is time-consuming and labour-intensive. In this study, we aim to evaluate the performance of deep learning-based segmentation of OC on contrast-enhanced CT images and the stability of radiomics features extracted from the automated segmentation. Methods: Staging abdominopelvic CT images of 367 patients with OC were retrospectively recruited. The training and cross-validation sets came from center A (n=283), and testing set (n=84) came from centers B and C. The tumours were manually delineated by a board-certified radiologist. Four model architectures provided by no-new-Net (nnU-Net) method were tested in this task. The segmentation performance evaluated by Dice score, Jaccard score, sensitivity and precision were compared among 4 architectures. The Pearson correlation coefficient (rho), concordance correlation coefficient (rho(c)) and Bland-Altman plots were used to evaluate the volumetric assessment of OC between manual and automated segmentations. The stability of extracted radiomics features was evaluated by intraclass correlation coefficient (ICC). Results: The 3D U-Net cascade architecture achieved highest median Dice score, Jaccard score, sensitivity and precision for OC segmentation in the testing set, 0.941, 0.890, 0.973 and 0.925, respectively. Tumour volumes of manual and automated segmentations were highly correlated (rho=0.944 and rho(c) =0.933). 85.0% of radiomics features had high correlation with ICC >0.8. Conclusions: The presented deep-learning segmentation could provide highly accurate automated segmentation of OC on CT images with high stability of the extracted radiomics features, showing the potential as a batch-processing segmentation tool.
引用
收藏
页码:5218 / 5229
页数:12
相关论文