A Primal-Dual Finite Element Method for Scalar and Vectorial Total Variation Minimization

被引:1
|
作者
Hilb, Stephan [1 ]
Langer, Andreas [1 ]
Alkaemper, Martin [1 ]
机构
[1] Lund Univ, Dept Math Sci, Box 117, S-22100 Lund, Sweden
关键词
Non-smooth optimization; Fenchel duality; Combined L-1/L-2 data-fidelity; Image reconstruction; Optical flow estimation; Finite element discretization; DATA-FIDELITY; SOBOLEV; REGULARIZATION; NONSMOOTH; BV;
D O I
10.1007/s10915-023-02209-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the Fenchel duality we build a primal-dual framework for minimizing a general functional consisting of a combined L-1 and L-2 data-fidelity term and a scalar or vectorial total variation regularisation term. The minimization is performed over the space of functions of bounded variations and appropriate discrete subspaces. We analyze the existence and uniqueness of solutions of the respective minimization problems. For computing a numerical solution we derive a semi-smooth Newton method on finite element spaces and highlight applications in denoising, inpainting and optical flow estimation.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] A simple primal-dual algorithm for nuclear norm and total variation regularization
    Zhu, Zhibin
    Yao, Jiawen
    Xu, Zheng
    Huang, Junzhou
    Zhang, Benxin
    NEUROCOMPUTING, 2018, 289 : 1 - 12
  • [32] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Ahmet Alacaoglu
    Olivier Fercoq
    Volkan Cevher
    Mathematical Programming Computation, 2020, 12 : 451 - 491
  • [33] Weighted Variational Minimization Model for Wavelet Domain Inpainting with Primal-Dual Method
    许建楼
    郝岩
    郝彬彬
    张凤云
    Journal of Donghua University(English Edition), 2014, 31 (04) : 458 - 462
  • [34] COMBINED PRIMAL-DUAL AND PENALTY METHODS FOR CONSTRAINED MINIMIZATION
    BERTSEKAS, DP
    SIAM JOURNAL ON CONTROL, 1975, 13 (03): : 521 - 544
  • [35] Study of a primal-dual algorithm for equality constrained minimization
    Armand, Paul
    Benoist, Joel
    Omheni, Riadh
    Pateloup, Vincent
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (03) : 405 - 433
  • [36] Study of a primal-dual algorithm for equality constrained minimization
    Paul Armand
    Joël Benoist
    Riadh Omheni
    Vincent Pateloup
    Computational Optimization and Applications, 2014, 59 : 405 - 433
  • [37] THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE FOR NONLINEAR-PROGRAMMING, A PRIMAL-DUAL METHOD
    FIACCO, AV
    MCCORMICK, GP
    MANAGEMENT SCIENCE, 1964, 10 (02) : 360 - 366
  • [38] Weighted variational minimization model for wavelet domain inpainting with primal-dual method
    Xu, Jian-Lou
    Hao, Yan
    Hao, Bin-Bin
    Zhang, Feng-Yun
    Journal of Donghua University (English Edition), 2014, 31 (04) : 458 - 462
  • [39] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (03) : 451 - 491
  • [40] Dual-Primal Domain Decomposition Methods for the Total Variation Minimization
    Lee, Chang-Ock
    Nam, Changmin
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 371 - 378