A Primal-Dual Finite Element Method for Scalar and Vectorial Total Variation Minimization

被引:1
|
作者
Hilb, Stephan [1 ]
Langer, Andreas [1 ]
Alkaemper, Martin [1 ]
机构
[1] Lund Univ, Dept Math Sci, Box 117, S-22100 Lund, Sweden
关键词
Non-smooth optimization; Fenchel duality; Combined L-1/L-2 data-fidelity; Image reconstruction; Optical flow estimation; Finite element discretization; DATA-FIDELITY; SOBOLEV; REGULARIZATION; NONSMOOTH; BV;
D O I
10.1007/s10915-023-02209-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the Fenchel duality we build a primal-dual framework for minimizing a general functional consisting of a combined L-1 and L-2 data-fidelity term and a scalar or vectorial total variation regularisation term. The minimization is performed over the space of functions of bounded variations and appropriate discrete subspaces. We analyze the existence and uniqueness of solutions of the respective minimization problems. For computing a numerical solution we derive a semi-smooth Newton method on finite element spaces and highlight applications in denoising, inpainting and optical flow estimation.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] A nonmonotone adaptive projected gradient method for primal-dual total variation image restoration
    Yu, Gaohang
    Xue, Wei
    Zhou, Yi
    SIGNAL PROCESSING, 2014, 103 : 242 - 249
  • [22] Accelerated dual-averaging primal-dual method for composite convex minimization
    Tan, Conghui
    Qian, Yuqiu
    Ma, Shiqian
    Zhang, Tong
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (04): : 741 - 766
  • [23] A primal-dual homotopy algorithm for -minimization with -constraints
    Brauer, Christoph
    Lorenz, Dirk A.
    Tillmann, Andreas M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (02) : 443 - 478
  • [24] Distributed Primal-Dual Proximal Method for Regularized Empirical Risk Minimization
    Khuzani, Masoud Badiei
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 938 - 945
  • [25] Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
    Zhang, Yuchen
    Xiao, Lin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 353 - 361
  • [26] Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
    Zhang, Yuchen
    Xiao, Lin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [27] A Decentralized Primal-Dual Method for Constrained Minimization of a Strongly Convex Function
    Hamedani, Erfan Yazdandoost
    Aybat, Necdet Serhat
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) : 5682 - 5697
  • [28] PRIMAL-DUAL MIXED FINITE ELEMENT METHODS FOR THE ELLIPTIC CAUCHY PROBLEM
    Burman, Erik
    Larson, Mats G.
    Oksanen, Lauri
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3480 - 3509
  • [29] A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD FOR FOKKER-PLANCK TYPE EQUATIONS
    Wang, Chunmei
    Wang, Junping
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2632 - 2661
  • [30] An edge-based smoothed finite element method for primal-dual shakedown analysis of structures
    Tran, Thanh Ngoc
    Liu, G. R.
    Nguyen-Xuan, H.
    Nguyen-Thoi, T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (07) : 917 - 938