Vision-knowledge fusion model for multi-domain medical report generation

被引:12
|
作者
Xu, Dexuan [1 ,2 ]
Zhu, Huashi [1 ,2 ]
Huang, Yu [1 ]
Jin, Zhi [3 ]
Ding, Weiping [4 ]
Li, Hang [5 ,6 ]
Ran, Menglong [5 ,6 ]
机构
[1] Peking Univ, Natl Engn Res Ctr Software Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Software & Microelect, Beijing 100871, Peoples R China
[3] Peking Univ, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[4] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[5] Peking Univ, Dept Dermatol, Hosp 1, Beijing 100034, Peoples R China
[6] Natl Clin Res Ctr Skin & Immune Dis, Beijing 100034, Peoples R China
关键词
Medical report generation; Knowledge graph; Multi-modal fusion; Graph neural network;
D O I
10.1016/j.inffus.2023.101817
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical report generation with knowledge graph is an essential task in the medical field. Although the existing knowledge graphs have many entities, their semantics are not sufficient due to the challenge of uniformly extracting and fusing the expert knowledge from different diseases. Therefore, it is necessary to automatically construct specific knowledge graph. In this paper, we propose a vision-knowledge fusion model based on medical images and knowledge graphs to fully utilize high-quality data from different diseases and languages. Firstly, we give a general method to automatically construct every domain knowledge graph based on medical standards. Secondly, we design a knowledge-based attention mechanism to effectively fuse image and knowledge. Then, we build a triples restoration module to obtain fine-grained knowledge, and the knowledge-based evaluation metrics are first proposed which are more reasonable and measurable from different dimensions. Finally, we conduct experiments to verify the effectiveness of our model on two different diseases datasets: the IU-Xray chest radiograph public dataset and the NCRC-DS dataset of Chinese dermoscopy reports we compiled. Our model outperforms previous benchmark methods and achieves excellent evaluation scores on both datasets. Additionally, interpretability and clinical usefulness of the model are validated and our method can be generalized to multiple domains and different diseases.
引用
收藏
页数:12
相关论文
共 44 条
  • [1] A MULTI-DOMAIN KNOWLEDGE TRANSFER METHOD FOR CONCEPTUAL DESIGN COMBINE WITH FBS AND KNOWLEDGE GRAPHA MULTI-DOMAIN KNOWLEDGE TRANSFER METHOD FOR CONCEPTUAL DESIGN COMBINE WITH FBS AND KNOWLEDGE GRAPH
    Lai, Bing
    Zhao, Wu
    Yu, Zeyuan
    Guo, Xin
    Zhang, Kai
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 2, 2022,
  • [2] Federated Multi-domain GNN Network for Brain Multigraph Generation
    Xu, Chun
    Rekik, Islem
    PREDICTIVE INTELLIGENCE IN MEDICINE, PRIME 2023, 2023, 14277 : 194 - 205
  • [3] Medical Visual Question-Answering Model Based on Knowledge Enhancement and Multi-Modal Fusion
    Zhang, Dianyuan
    Yu, Chuanming
    An, Lu
    Proceedings of the Association for Information Science and Technology, 2024, 61 (01) : 703 - 708
  • [4] Knowledge-graph-based multi-domain model integration method for digital-twin workshops
    Wang, Xiangdong
    Hu, Xiaofeng
    Ren, Zijie
    Tian, Tianci
    Wan, Jiafu
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (1-2) : 405 - 421
  • [5] Knowledge-graph-based multi-domain model integration method for digital-twin workshops
    Xiangdong Wang
    Xiaofeng Hu
    Zijie Ren
    Tianci Tian
    Jiafu Wan
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 405 - 421
  • [6] Fake News Detection Based on BERT Multi-domain and Multi-modal Fusion Network
    Yu, Kai
    Jiao, Shiming
    Ma, Zhilong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 252
  • [7] Multi-domain knowledge graph embeddings for gene-disease association prediction
    Susana Nunes
    Rita T. Sousa
    Catia Pesquita
    Journal of Biomedical Semantics, 14
  • [8] Multi-domain knowledge graph embeddings for gene-disease association prediction
    Nunes, Susana
    Sousa, Rita T.
    Pesquita, Catia
    JOURNAL OF BIOMEDICAL SEMANTICS, 2023, 14 (01)
  • [9] KG-MFEND: an efficient knowledge graph-based model for multi-domain fake news detection
    Fu, Lifang
    Peng, Huanxin
    Liu, Shuai
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (16) : 18417 - 18444
  • [10] KG-MFEND: an efficient knowledge graph-based model for multi-domain fake news detection
    Lifang fu
    Huanxin Peng
    Shuai Liu
    The Journal of Supercomputing, 2023, 79 : 18417 - 18444