Effects of teff straw ash on the mechanical and microstructural properties of ambient cured fly ash-based geopolymer mortar for onsite applications

被引:21
|
作者
Bezabih, Tajebe [1 ]
Kanali, Christopher [2 ]
Thuo, Joseph [3 ]
机构
[1] Pan African Univ Inst Basic Sci Technol & Innovat, Dept Civil Engn, Nairobi, Kenya
[2] Jomo Kenyatta Univ Agr & Technol JKUAT, Dept Agr & Biosyst Engn, Nairobi, Kenya
[3] Dedan Kimathi Univ Technol DeKUT, Dept Civil Engn, Nyeri, Kenya
关键词
Teff straw ash; Compressive strength; Fly ash; Cement; Geopolymer; Microstructure; Ambient curing; RICE HUSK ASH; COMPRESSIVE STRENGTH; PORTLAND-CEMENT; CURING TEMPERATURE; CONCRETE; ALKALI; SLAG; DURABILITY; EMISSIONS; REMOVAL;
D O I
10.1016/j.rineng.2023.101123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although geopolymer cement (GPC) is a substitute for Portland cement, its application is restricted due to the need for high-temperature curing (40-90 degrees C), which makes it challenging to utilise for onsite applications. To address this issue, the current study examined the potential of substituting fly ash (FA) with teff straw ash (TSA) in geopolymer mortars cured at ambient temperature. The findings revealed that substituting FA with TSA can eliminate the need for high-temperature curing, and the compressive strengths of FA-TSA-based geopolymer mortar mixtures cured for 28 days ranged from 45 to 53 MPa. Further, increasing the TSA content enhanced the mortar's flexural and direct tensile strengths. A teff straw ash level of 10% increased compressive, flexural, and direct tensile strengths by 40%, 59%, and 30% at 28 days, respectively. Furthermore, the mineralogical phases of the mortar after 28 days confirmed the presence of gismondine coexisting with other phases, and microstructural analysis indicates that the inclusion of TSA resulted in a denser structure. These findings suggest that TSA could be a potential substitute for FA in GPC applications to lower energy usage and environmental impact.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Mishra, Jyotirmoy
    Nanda, Bharadwaj
    Patro, Sanjaya K.
    Das, Shaswat K.
    Mustakim, Syed M.
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2022, 24 (03) : 1095 - 1108
  • [2] The improvement of strength and microstructural properties of fly ash-based geopolymer by adding elemental aluminum powder
    Durak, Ugur
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2023, 25 (01) : 157 - 170
  • [3] Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar
    Li, Xueying
    Ma, Xinwei
    Zhang, Shoujie
    Zheng, Enzu
    MATERIALS, 2013, 6 (04): : 1485 - 1495
  • [4] Effects of petroleum sludge ash in fly ash-based geopolymer mortar
    Kankia, Mubarak Usman
    Baloo, Lavania
    Mohammed, Bashar S.
    Hassan, Suhaimi B.
    Haruna, Sani
    Danlami, Nasiru
    Ishak, Effa Affiana
    Samahani, Wan Nurliyana
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 272
  • [5] Experimental study of the effect of graphene on properties of ambient-cured slag and fly ash-based geopolymer paste and mortar
    Sajjad, Umer
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 313
  • [6] Internal Curing Effects of Slag on Properties and Microstructure of Ambient-Cured Fly Ash-Based Geopolymer Mortar
    Xiao, Li
    Zhang, Chao
    Zhang, Hongen
    Jiang, Zhengwu
    Buildings, 2024, 14 (12)
  • [7] Fly ash-based geopolymer: clean production, properties and applications
    Zhuang, Xiao Yu
    Chen, Liang
    Komarneni, Sridhar
    Zhou, Chun Hui
    Tong, Dong Shen
    Yang, Hui Min
    Yu, Wei Hua
    Wang, Hao
    JOURNAL OF CLEANER PRODUCTION, 2016, 125 : 253 - 267
  • [8] Effects of Elevated Temperature and Activation Solution Content on Microstructural and Mechanical Properties of Fly Ash-based Geopolymer
    Moutaoukil, Ghizlane
    Alehyen, Saliha
    Sobrados, Isabel
    Safhi, Amine el Mahdi
    KSCE JOURNAL OF CIVIL ENGINEERING, 2023, 27 (06) : 2372 - 2384
  • [9] Effect of Fine Aggregate Particle Characteristics on Mechanical Properties of Fly Ash-Based Geopolymer Mortar
    Li, Heng
    Gao, Pengpeng
    Xu, Fang
    Sun, Tao
    Zhou, Yu
    Zhu, Jing
    Peng, Chao
    Lin, Juntao
    MINERALS, 2021, 11 (08)
  • [10] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Jyotirmoy Mishra
    Bharadwaj Nanda
    Sanjaya K. Patro
    Shaswat K. Das
    Syed M. Mustakim
    Journal of Material Cycles and Waste Management, 2022, 24 : 1095 - 1108