The Eulerian Distribution on k-Colored Involutions

被引:0
|
作者
Ma, Jun [1 ]
Toumazet, Frederic [2 ,3 ]
Wang, Jiaqi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
[2] Univ Gustave Eiffel, Lab Informat Gaspard Monge, CNRS, ENPC,ESIEE Paris, 5 Blvd Descartes, F-77454 Marne La Vallee 2, France
[3] Shanghai Jiao Tong Univ, Paris Elite Inst Technol, SPEIT, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
关键词
Eulerian polynomial; Involution; gamma-positivity; Permutation; PERMUTATIONS;
D O I
10.1007/s00373-023-02639-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I-n,I- k be the set of k-colored involutions of order n and J(n, k) be the set of k-colored involutions in I-n,I- k without fixed points. Denote by des(pi, c) the number of descents of k-colored permutations (pi, c). In this paper, it is proved that the following polynomials I-n,I- k (x) = Sigma((pi,c)) (is an element of In, k) chi des(pi,c)(n >= 1, k >= 1) and J(n, k) (x) = Sigma((pi,c)) (is an element of Jn, k) chi des(pi,c)(n >= 1, k >= 2) are gamma-positive.
引用
收藏
页数:27
相关论文
共 18 条