Numerical Computation of Critical Surfaces for the Breakup of Invariant Tori in Hamiltonian Systems

被引:0
作者
Bustamante, Adrian P. [1 ]
Chandre, Cristel [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Aix Marseille Univ, CNRS, I2M, F-13009 Marseille, France
基金
欧盟地平线“2020”;
关键词
Hamiltonian systems; KAM; invariant tori; renormalization; RENORMALIZATION-GROUP; KAM THEORY; UNIVERSALITY;
D O I
10.1137/21M1448501
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute the critical surface for the existence of invariant tori of a family of Hamiltonian systems with two and three degrees of freedom. We use and compare two methods to compute the critical surfaces: renormalization-group transformations and conjugation in configuration space. We unveil the presence of cusps in the critical surface for the breakup of three-dimensional invariant tori of Hamiltonian systems with three degrees of freedom, whereas the critical surface of two-dimensional invariant tori of Hamiltonian systems with two degrees of freedom is expected to be smooth.
引用
收藏
页码:483 / 500
页数:18
相关论文
共 23 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]  
Artuso R., 1992, Chaos, Solitons and Fractals, V2, P181, DOI 10.1016/0960-0779(92)90007-A
[3]   BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, DL .
EUROPHYSICS LETTERS, 1991, 15 (04) :381-386
[4]   The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations [J].
Blass, Timothy ;
de la Llave, Rafael .
JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (06) :1183-1200
[5]   Computation of the Breakdown of Analyticity in Statistical Mechanics Models: Numerical Results and a Renormalization Group Explanation [J].
Calleja, Renato ;
de la Llave, Rafael .
JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (06) :940-951
[6]   Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps [J].
Calleja, Renato ;
de la Llave, Rafael .
NONLINEARITY, 2009, 22 (06) :1311-1336
[7]   LIE TRANSFORM PERTURBATION-THEORY FOR HAMILTONIAN-SYSTEMS [J].
CARY, JR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 79 (02) :129-159
[8]   CONSTRUCTION OF ANALYTIC KAM SURFACES AND EFFECTIVE STABILITY BOUNDS [J].
CELLETTI, A ;
CHIERCHIA, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :119-161
[9]   Improved estimates on the existence of invariant tori for Hamiltonian systems [J].
Celletti, A ;
Giorgilli, A ;
Locatelli, U .
NONLINEARITY, 2000, 13 (02) :397-412
[10]   Critical attractor and universality in a renormalization scheme for three frequency Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5125-5128