Prediction of the Propulsive Performance of an Atmosphere-Breathing Electric Propulsion System on Cathode-Less Plasma Thruster

被引:4
作者
Souhair, Nabil [1 ]
Magarotto, Mirko [2 ]
Andriulli, Raoul [1 ]
Ponti, Fabrizio [1 ]
机构
[1] Univ Bologna, Dept Ind Engn DIN, Alma Prop Lab, I-47122 Forli, Italy
[2] Univ Padua, Dept Informat Engn DEI, I-35131 Padua, Italy
基金
欧盟地平线“2020”;
关键词
aerospace propulsion; numerical modelling; plasma thruster; atmosphere-breathing electric propulsion; atmospheric plasma;
D O I
10.3390/aerospace10020100
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Atmosphere-breathing electric propulsion (ABEP) is a type of electric propulsion system that uses the atmosphere as a propellant source instead of a stored reservoir. This technology is still in its early stages, but holds the promise of providing a clean, efficient, and sustainable propulsion system for spacecraft, enabling very low Earth orbit (VLEO) mission scenarios. To optimise the ABEP technology, accurately simulating air-based plasma chemistry plays a crucial role. In this paper, an air-based global model (GM) is presented that includes a detailed chemistry model for the various reactions that are involved in ABEP applications. The model's goal is to forecast the performance of a cathode-less RF plasma thruster under various pressure levels and species concentrations that are typical of VLEO missions. The GM was exploited to map the performance of a fictitious ABEP based on a cathode-less RF thruster in order to assess its feasibility in VLEO. The numerical model is promising as a tool for the design of ABEP systems and for the preliminary optimization of mission scenarios.
引用
收藏
页数:14
相关论文
共 47 条
[1]   The AETHER project: development of air-breathing electric propulsion for VLEO missions [J].
Andreussi, T. ;
Ferrato, E. ;
Paissoni, C. A. ;
Kitaeva, A. ;
Giannetti, V ;
Piragino, A. ;
Schaeff, S. ;
Katsonis, K. ;
Berenguer, Ch ;
Kovacova, Z. ;
Neubauer, E. ;
Tisaev, M. ;
Karadag, B. ;
Fabris, A. Lucca ;
Smirnova, M. ;
Mingo, A. ;
Le Quang, D. ;
Alsalihi, Z. ;
Bariselli, F. ;
Parodi, P. ;
Jorge, P. ;
Magin, T. E. .
CEAS SPACE JOURNAL, 2022, 14 (04) :717-740
[2]  
Andreussi T., 2019, P AIAA PROPULSION EN
[3]  
Andrews S., 2022, P 73 INT ASTRONAUTIC
[4]   Fully kinetic model of plasma expansion in a magnetic nozzle [J].
Andrews, Shaun ;
Di Fede, Simone ;
Magarotto, Mirko .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (03)
[5]  
Bellomo N., 2019, P 70 INT ASTR C IAC
[6]   Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system [J].
Bellomo, Nicolas ;
Magarotto, Mirko ;
Manente, Marco ;
Trezzolani, Fabio ;
Mantellato, Riccardo ;
Cappellini, Lorenzo ;
Paulon, Devis ;
Selmo, Antonio ;
Scalzi, Davide ;
Minute, Marco ;
Duzzi, Matteo ;
Barbato, Alessandro ;
Schiavon, Alessandro ;
Di Fede, Simone ;
Souhair, Nabil ;
De Carlo, Paola ;
Barato, Francesco ;
Milza, Fabiana ;
Toson, Elena ;
Pavarin, Daniele .
CEAS SPACE JOURNAL, 2022, 14 (01) :79-90
[7]  
Berenguer C., 2018, P 6 SPACE PROPULSION
[8]  
Bittencourt J.A., 2004, Fundamentals of plasma physics, DOI DOI 10.1007/978-1-4757-4030-1
[9]   An expression for the hlfactor in low-pressure electronegative plasma discharges [J].
Chabert, P. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (02)
[10]   Global model of a gridded-ion thruster powered by a radiofrequency inductive coil [J].
Chabert, P. ;
Monreal, J. Arancibia ;
Bredin, J. ;
Popelier, L. ;
Aanesland, A. .
PHYSICS OF PLASMAS, 2012, 19 (07)