Patterning-Effect Calibration Algorithm for Secure Decoy-State Quantum Key Distribution

被引:10
作者
Kang, Xiang [1 ,2 ,3 ]
Lu, Feng-Yu [1 ,2 ,3 ]
Wang, Shuang [1 ,2 ,3 ]
Chen, Jia-Lin [1 ,2 ,3 ]
Wang, Ze-Hao [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
He, De-Yong [1 ,2 ,3 ]
Chen, Wei [1 ,2 ,3 ]
Fan-Yuan, Guan-Jie [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
Han, Zheng-Fu [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Patterning effect; calibration algorithm; intensity modulator; decoy-state method; quantum key distribution; BLINDING ATTACK; ROBUST;
D O I
10.1109/JLT.2022.3211442
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The decoy-state method for the quantum key distribution (QKD) is a great countermeasure against the fatal photon number splitting attack. At present, the decoy-state method has been widely employed in practical QKD systems. However, the patterning effect, namely the correlated intensity fluctuations in practical QKD systems, violates the important assumption of the decoy-state method and seriously threatens the protocol security. The previous works investigated the patterning effect between the adjacent pulses and proposed the countermeasures from the degree of post selection and modulators. In this work, we investigate the patterning effect with larger correlation range and present an algorithm to calibrate the driving voltages to mitigate the patterning effect. According to our methods, we experimentally observe the higher-order patterning effect and successfully mitigate it by our calibration algorithm. The experiment results indicate that our methods efficiently improve the protocol security and are expected to be widely employed in practical decoy-state QKD systems.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 73 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[3]   Non-invasive imaging through opaque scattering layers [J].
Bertolotti, Jacopo ;
van Putten, Elbert G. ;
Blum, Christian ;
Lagendijk, Ad ;
Vos, Willem L. ;
Mosk, Allard P. .
NATURE, 2012, 491 (7423) :232-234
[4]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[5]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[6]  
Chen J., 2021, arXiv, DOI [DOI 10.1038/s41566-021-00828-5, DOI 10.1038/S41592-020-01008-Z]
[7]   Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Weijun ;
Hu, Xiao-Long ;
Guan, Jian-Yu ;
Yu, Zong-Wen ;
Xu, Hai ;
Lin, Jin ;
Li, Ming-Jun ;
Chen, Hao ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 124 (07)
[8]   Measurement-device-independent quantum key distribution with insecure sources [J].
Ding, Hua-Jian ;
Zhou, Xing-Yu ;
Zhang, Chun-Hui ;
Li, Jian ;
Wang, Qin .
OPTICS LETTERS, 2022, 47 (03) :665-668
[9]   Optimizing Decoy-State Protocols for Practical Quantum Key Distribution Systems [J].
Fan-Yuan, Guan-Jie ;
Wang, Ze-Hao ;
Wang, Shuang ;
Yin, Zhen-Qiang ;
Chen, Wei ;
He, De-Yong ;
Guo, Guang-Can ;
Han, Zheng-Fu .
ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (04)
[10]   CORRELATIONS AND FLUCTUATIONS OF COHERENT WAVE TRANSMISSION THROUGH DISORDERED MEDIA [J].
FENG, SC ;
KANE, C ;
LEE, PA ;
STONE, AD .
PHYSICAL REVIEW LETTERS, 1988, 61 (07) :834-837