CNN-Based Broad Learning for Cross-Domain Emotion Classification

被引:18
作者
Zeng, Rong [1 ]
Liu, Hongzhan [1 ]
Peng, Sancheng [2 ]
Cao, Lihong [2 ]
Yang, Aimin [3 ]
Zong, Chengqing [4 ]
Zhou, Guodong [5 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Nanophoton Funct Mat & Dev, Guangzhou 511400, Peoples R China
[2] Guangdong Univ Foreign Studies, Lab Language Engn & Comp, Guangzhou 510006, Peoples R China
[3] Lingnan Normal Univ, Sch Comp Sci & Intelligence Educ, Guangzhou 510006, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[5] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215031, Peoples R China
来源
TSINGHUA SCIENCE AND TECHNOLOGY | 2023年 / 28卷 / 02期
关键词
Measurement; Deep learning; Adaptation models; Feature extraction; Convolutional neural networks; Data mining; Task analysis; cross-domain emotion classification; CNN; broad learning; classifier; co-training;
D O I
10.26599/TST.2022.9010007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-domain emotion classification aims to leverage useful information in a source domain to help predict emotion polarity in a target domain in a unsupervised or semi-supervised manner. Due to the domain discrepancy, an emotion classifier trained on source domain may not work well on target domain. Many researchers have focused on traditional cross-domain sentiment classification, which is coarse-grained emotion classification. However, the problem of emotion classification for cross-domain is rarely involved. In this paper, we propose a method, called convolutional neural network (CNN) based broad learning, for cross-domain emotion classification by combining the strength of CNN and broad learning. We first utilized CNN to extract domain-invariant and domain-specific features simultaneously, so as to train two more efficient classifiers by employing broad learning. Then, to take advantage of these two classifiers, we designed a co-training model to boost together for them. Finally, we conducted comparative experiments on four datasets for verifying the effectiveness of our proposed method. The experimental results show that the proposed method can improve the performance of emotion classification more effectively than those baseline methods.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 35 条
[1]   EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks [J].
Abdul-Mageed, Muhammad ;
Ungar, Lyle .
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, :718-728
[2]   Borrow from rich cousin: transfer learning for emotion detection using cross lingual embedding [J].
Ahmad, Zishan ;
Jindal, Raghav ;
Ekbal, Asif ;
Bhattachharyya, Pushpak .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 139
[3]   A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis [J].
Bie, Yong ;
Yang, Yan .
BIG DATA MINING AND ANALYTICS, 2021, 4 (03) :195-207
[4]   Integrating structured biological data by Kernel Maximum Mean Discrepancy [J].
Borgwardt, Karsten M. ;
Gretton, Arthur ;
Rasch, Malte J. ;
Kriegel, Hans-Peter ;
Schoelkopf, Bernhard ;
Smola, Alex J. .
BIOINFORMATICS, 2006, 22 (14) :E49-E57
[5]   Multi-Class Sentiment Analysis on Twitter: Classification Performance and Challenges [J].
Bouazizi, Mondher ;
Ohtsuki, Tomoaki .
BIG DATA MINING AND ANALYTICS, 2019, 2 (03) :181-194
[6]   Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture [J].
Chen, C. L. Philip ;
Liu, Zhulin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (01) :10-24
[7]   Pre-Training With Whole Word Masking for Chinese BERT [J].
Cui, Yiming ;
Che, Wanxiang ;
Liu, Ting ;
Qin, Bing ;
Yang, Ziqing .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 :3504-3514
[8]  
Du CN, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4019
[9]   Wasserstein based transfer network for cross-domain sentiment classification [J].
Du, Yongping ;
He, Meng ;
Wang, Lulin ;
Zhang, Haitong .
KNOWLEDGE-BASED SYSTEMS, 2020, 204
[10]   Nonlinear system identification using a simplified Fuzzy Broad Learning System: Stability analysis and a comparative study [J].
Feng, Shuang ;
Chen, C. L. Philip .
NEUROCOMPUTING, 2019, 337 :274-286