Mutual-Visibility Sets in Cartesian Products of Paths and Cycles

被引:3
|
作者
Korze, Danilo [1 ]
Vesel, Aleksander [2 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
关键词
Mutual-visibility set; mutual-visibility number; Cartesian product; ROBOTS;
D O I
10.1007/s00025-024-02139-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given graph G, the mutual-visibility problem asks for the largest set of vertices M subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \subseteq V(G)$$\end{document} with the property that for any pair of vertices u,v is an element of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v \in M$$\end{document} there exists a shortest u, v-path of G that does not pass through any other vertex in M. The mutual-visibility problem for Cartesian products of a cycle and a path, as well as for Cartesian products of two cycles, is considered. Optimal solutions are provided for the majority of Cartesian products of a cycle and a path, while for the other family of graphs, the problem is completely solved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Dimensional results for Cartesian products of homogeneous Moran sets
    Li Cao
    Xing-Gang He
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 673 - 680
  • [42] THE COMPLETE RESOLUTION OF CARTESIAN PRODUCTS OF FUZZY-SETS
    BOURKE, MM
    FISHER, DG
    FUZZY SETS AND SYSTEMS, 1994, 63 (01) : 111 - 115
  • [43] Dimensional results for Cartesian products of homogeneous Moran sets
    Cao, Li
    He, Xing-Gang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (04): : 673 - 680
  • [44] The crossing numbers of Cartesian products of paths with 5-vertex graphs
    Klesc, M
    DISCRETE MATHEMATICS, 2001, 233 (1-3) : 353 - 359
  • [45] Formulas for various domination numbers of products of paths and cycles
    Repolusk, Polona
    Zerovnik, Janez
    ARS COMBINATORIA, 2018, 137 : 177 - 202
  • [46] n-fold L(2,1)-labelings of Cartesian product of paths and cycles
    Chang, Fei-Huang
    Chia, Ma-Lian
    Jiang, Shih-Ang
    Kuo, David
    Yan, Jing-Ho
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (03)
  • [47] The (d, 1)-total labelling of square of cycles and their Cartesian products with bipartite graphs
    Zuo, Liancui
    Bai, Dan
    Shang, Chunhong
    ARS COMBINATORIA, 2019, 143 : 227 - 236
  • [48] The rainbow 2-connectivity of Cartesian products of 2-connected graphs and paths
    Susanti, Bety Hayat
    Salman, A. N. M.
    Simanjuntak, Rinovia
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (01) : 145 - 156
  • [49] 2-distance colorings of some direct products of paths and cycles
    Kim, Byeong Moon
    Song, Byung Chul
    Rho, Yoomi
    DISCRETE MATHEMATICS, 2015, 338 (10) : 1730 - 1739
  • [50] Proper Coloring Distance in Edge-Colored Cartesian Products of Complete Graphs and Cycles
    Arora, Ajay
    Cheng, Eddie
    Magnant, Colton
    PARALLEL PROCESSING LETTERS, 2019, 29 (04)