共 50 条
Mutual-Visibility Sets in Cartesian Products of Paths and Cycles
被引:3
|作者:
Korze, Danilo
[1
]
Vesel, Aleksander
[2
]
机构:
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
关键词:
Mutual-visibility set;
mutual-visibility number;
Cartesian product;
ROBOTS;
D O I:
10.1007/s00025-024-02139-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For a given graph G, the mutual-visibility problem asks for the largest set of vertices M subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \subseteq V(G)$$\end{document} with the property that for any pair of vertices u,v is an element of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v \in M$$\end{document} there exists a shortest u, v-path of G that does not pass through any other vertex in M. The mutual-visibility problem for Cartesian products of a cycle and a path, as well as for Cartesian products of two cycles, is considered. Optimal solutions are provided for the majority of Cartesian products of a cycle and a path, while for the other family of graphs, the problem is completely solved.
引用
收藏
页数:20
相关论文