Evaluating generation of chaotic time series by convolutional generative adversarial networks

被引:0
|
作者
Tanaka, Yuki [1 ]
Yamaguti, Yutaka [2 ]
机构
[1] Fukuoka Inst Technol, Grad Sch Engn, Wajiro 3 30 1,Higashi ku, Fukuoka 8110295, Japan
[2] Fukuoka Inst Technol, Fac Informat Engn, Wajiro 3 30 1,Higashi ku, Fukuoka 8110295, Japan
关键词
chaos; generative adversarial network; convolutional network; nonlinear time; series analysis; NONLINEARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To understand the ability and limitations of convolutional neural networks to generate time series that mimic complex temporal signals, we trained a generative adversarial network consisting of convolutional networks to generate chaotic time series and used nonlinear time series analysis to evaluate the generated time series. A numerical measure of determinism and the Lyapunov exponent showed that the generated time series well reproduce the chaotic properties of the original time series. However, error distribution analyses showed that large errors appeared at a low but non-negligible rate. Such errors would not be expected if the distribution were assumed to be exponential.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [31] Research on Ethnic Pattern Generation Based on Generative Adversarial Networks
    Wu, Hao
    He, Wenze
    Li, Xiongfei
    Liang, Yanchun
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [32] A Generative Adversarial Network with Attention Mechanism for Time Series Forecasting
    Su, Min
    Du, Shengdong
    Hu, Jie
    Li, Tianrui
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 197 - 202
  • [33] Anomaly localization in regular textures based on deep convolutional generative adversarial networks
    Muhammed Ali Nur Oz
    Muharrem Mercimek
    Ozgur Turay Kaymakci
    Applied Intelligence, 2022, 52 : 1556 - 1565
  • [34] Ghost Imaging Quality Optimization Based on Deep Convolutional Generative Adversarial Networks
    Hou Maoxin
    Liu Zhaotao
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (10)
  • [35] Anomaly localization in regular textures based on deep convolutional generative adversarial networks
    Oz, Muhammed Ali Nur
    Mercimek, Muharrem
    Kaymakci, Ozgur Turay
    APPLIED INTELLIGENCE, 2022, 52 (02) : 1556 - 1565
  • [36] Using Generative Adversarial Networks and Parameter Optimization of Convolutional Neural Networks for Lung Tumor Classification
    Lin, Chun-Hui
    Lin, Cheng-Jian
    Li, Yu-Chi
    Wang, Shyh-Hau
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 17
  • [37] Scalable image generation and super resolution using generative adversarial networks
    Turhan, Ceren Guzel
    Bilge, Hasan Sakir
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2020, 35 (02): : 953 - 966
  • [38] Generative adversarial networks based sample generation of coal and rock images
    Wang X.
    Gao F.
    Chen J.
    Hao P.
    Jing Z.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 (09): : 3066 - 3078
  • [39] A THz Passive Image Generation Method Based on Generative Adversarial Networks
    Yang, Guan
    Li, Chao
    Liu, Xiaojun
    Fang, Guangyou
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [40] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173